Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1091-1103.DOI: 10.11996/JG.j.2095-302X.2023061091
• Review • Previous Articles Next Articles
CHENG Huan1(), WANG Shuo2, LI Meng2, QIN Lun-ming1(
), ZHAO Fang3
Received:
2023-06-27
Accepted:
2023-09-08
Online:
2023-12-31
Published:
2023-12-17
Contact:
QIN Lun-ming (1983-), associate professor, Ph.D. His main research interests cover computer vision and image segmentation, etc. E-mail:About author:
CHENG Huan (1999-), master student. Her main research interests cover computer vision and computer graphics.
E-mail:chenghuan0116@gmail.com
Supported by:
CLC Number:
CHENG Huan, WANG Shuo, LI Meng, QIN Lun-ming, ZHAO Fang. A review of neural radiance field for autonomous driving scene[J]. Journal of Graphics, 2023, 44(6): 1091-1103.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023061091
Method | PSNR (dB) | SSIM | LPIPS | Datasets |
---|---|---|---|---|
NeRF[ | 18.56 | 0.557 | 0.554 | KITTI |
NSG[ | 21.53 | 0.673 | 0.254 | KITTI |
pixelNeRF[ | 20.1 | 0.761 | 0.175 | KITTI |
SUDS[ | 22.77 | 0.797 | 0.171 | KITTI |
MARS[ | 24.23 | 0.845 | 0.160 | KITTI |
Urban-NeRF[ | 21.49 | 0.661 | 0.491 | NuScenes |
Mip-NeRF[ | 18.22 | 0.655 | 0.421 | NuScenes |
Table 1 Performance comparison of NeRF and its extensions in driving scene
Method | PSNR (dB) | SSIM | LPIPS | Datasets |
---|---|---|---|---|
NeRF[ | 18.56 | 0.557 | 0.554 | KITTI |
NSG[ | 21.53 | 0.673 | 0.254 | KITTI |
pixelNeRF[ | 20.1 | 0.761 | 0.175 | KITTI |
SUDS[ | 22.77 | 0.797 | 0.171 | KITTI |
MARS[ | 24.23 | 0.845 | 0.160 | KITTI |
Urban-NeRF[ | 21.49 | 0.661 | 0.491 | NuScenes |
Mip-NeRF[ | 18.22 | 0.655 | 0.421 | NuScenes |
Method | Enocode | PSNR (dB) | SSIM | LPIPS | Train time | Iteration (K) |
---|---|---|---|---|---|---|
NeRF[ | 位置编码 | 31.01 | 0.947 | 0.081 | >12 h | 300 |
pixelNeRF[ | 位置编码 | - | - | - | >12 h | 400 |
Mip-NeRF[ | 集成位置编码 | 33.09 | 0.961 | 0.043 | ≈6 h | 612 |
GRF[ | 位置编码 | 27.07 | 0.924 | 0.090 | - | - |
Point-NeRF[ | 位置编码 | 33.00 | 0.978 | 0.055 | ≈7 h | 200 |
Instant NGP[ | 哈希编码 | 33.18 | - | - | ≈5 m | 256 |
Plenoxels[ | 位置编码 | 31.71 | 0.958 | 0.050 | ≈11 m | 10 |
DVGO[ | 位置编码 | 31.95 | 0.957 | 0.053 | ≈15 m | 20 |
PlenOctree[ | 位置编码 | 31.71 | 0.958 | 0.053 | >12 h | - |
Table 2 Performance comparison of NeRF and its extended reseraches
Method | Enocode | PSNR (dB) | SSIM | LPIPS | Train time | Iteration (K) |
---|---|---|---|---|---|---|
NeRF[ | 位置编码 | 31.01 | 0.947 | 0.081 | >12 h | 300 |
pixelNeRF[ | 位置编码 | - | - | - | >12 h | 400 |
Mip-NeRF[ | 集成位置编码 | 33.09 | 0.961 | 0.043 | ≈6 h | 612 |
GRF[ | 位置编码 | 27.07 | 0.924 | 0.090 | - | - |
Point-NeRF[ | 位置编码 | 33.00 | 0.978 | 0.055 | ≈7 h | 200 |
Instant NGP[ | 哈希编码 | 33.18 | - | - | ≈5 m | 256 |
Plenoxels[ | 位置编码 | 31.71 | 0.958 | 0.050 | ≈11 m | 10 |
DVGO[ | 位置编码 | 31.95 | 0.957 | 0.053 | ≈15 m | 20 |
PlenOctree[ | 位置编码 | 31.71 | 0.958 | 0.053 | >12 h | - |
Fig. 8 Reconstruction of autonomous driving scenarios by NSG[17] ((a) Input scene (b) Scene foreground; (c) Scene background; (d) Scene reconstruction)
[1] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]// European Conference on Computer Vision. Cham: Springer, 2020: 405-421. |
[2] | MILDENHALL B, SRINIVASAN P P, ORTIZ-CAYON R, et al. Local light field fusion[J]. ACM Transactions on Graphics, 2019, 38(4): 1-14. |
[3] | SITZMANN V, ZOLLHÖFER M, WETZSTEIN G. Scene representation networks: continuous 3D-structure-aware neural scene representations[EB/OL]. [2022-12-12]. https://arxiv.org/abs/1906.01618. |
[4] | KAJIYA J T, VON HERZEN B P. Ray tracing volume densities[C]// The 11th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1984: 165-174. |
[5] |
KALRA N, PADDOCK S M. Driving to safety: how many Miles of driving would it take to demonstrate autonomous vehicle reliability?[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 182-193.
DOI URL |
[6] | SITZMANN V, ZOLLHÖFER M, WETZSTEIN G. Scene representation networks: continuous 3D-structure-aware neural scene representations[EB/OL]. [2022-12-12]. https://arxiv.org/abs/1906.01618. |
[7] | LIN C H, KONG C, LUCEY S. Learning efficient point cloud generation for dense 3D object reconstruction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7114-7121. |
[8] | KANAZAWA A, TULSIANI S, EFROS A A, et al. Learning category-specific mesh reconstruction from image collections[C]// European Conference on Computer Vision. Cham: Springer, 2018: 371-386. |
[9] | MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4460-4470. |
[10] | PARK J J, FLORENCE P R, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 165-174. |
[11] | SHAN Q, SUSSKIND J, SANKAR A, et al. Neural rendering: US20210248811[P]. 2021-08-12. |
[12] | TANCIK M, SRINIVASAN P P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[EB/OL]. [2022-12-22]. https://arxiv.org/abs/2006.10739. |
[13] | TEWARI A, THIES J, MILSENHALL B, et al. Advances in neural rendering[J]. Computer Graphics Forum: Journal of the European Association for Computer Graphics, 2022(2):41. |
[14] | SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 4104-4113. |
[15] | GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2012: 3354-3361. |
[16] | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11621-11631. |
[17] | OST J, MANNAN F, THUEREY N, et al. Neural scene graphs for dynamic scenes[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2855-2864. |
[18] | YU A, YE V, TANCIK M, et al. pixelNeRF: neural radiance fields from one or few images[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4576-4585. |
[19] | TURKI H, ZHANG J Y, FERRONI F, et al. SUDS: scalable urban dynamic scenes[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 12375-12385. |
[20] | WU Z R, LIU T Y, LUO L Y, et al. MARS: an instance-aware, modular and realistic simulator for autonomous driving[EB/OL]. [2023-02-13]. https://arxiv.org/abs/2307.15058. |
[21] | REMATAS K, LIU A, SRINIVASAN P, et al. Urban radiance fields[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 12932-12942 |
[22] | BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 5835-5844. |
[23] | TREVITHICK A, YANG B. GRF: learning a general radiance field for 3D representation and rendering[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 15182-15192. |
[24] | XU Q G, XU Z X, PHILIP J, et al. Point-NeRF: point-based neural radiance fields[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5428-5438. |
[25] | MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[EB/OL]. [2022-12-12]. https://arxiv.org/abs/2201.05989. |
[26] | YU A, FRIDOVICH-KEIL S, TANCIK M, et al. Plenoxels: radiance fields without neural networks[EB/OL]. [2022-12-12]. https://arxiv.org/abs/2112.05131. |
[27] | SUN C, SUN M, CHEN H T. Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5459-5469. |
[28] | YU A, LI R L, TANCIK M, et al. PlenOctrees for real-time rendering of neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 5752-5761. |
[29] | BARRON J T, MILDENHALL B, VERBIN D, et al. Mip-NeRF 360: unbounded anti-aliased neural radiance fields[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5460-5469. |
[30] | CHEN A P, XU Z X, ZHAO F Q, et al. MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 14104-14113. |
[31] | GAO K, GAO Y N, HE H J, et al. NeRF: neural radiance field in 3D vision, A comprehensive review[EB/OL]. [2022-12-22]. https://arxiv.org/abs/2210.00379. |
[32] | TURKI H, RAMANAN D, SATYANARAYANAN M. Mega-NeRF: scalable construction of large-scale NeRFs for virtual fly- throughs[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 12912-12921. |
[33] | TANCIK M, CASSER V, YAN X C, et al. Block-NeRF: scalable large scene neural view synthesis[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8238-8248. |
[34] | MARTIN-BRUALLA R, RADWAN N, SAJJADI M S M, et al. NeRF in the wild: neural radiance fields for unconstrained photo collections[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7210-7219. |
[35] | MEULEMAN A, LIU Y L, GAO C, et al. Progressively optimized local radiance fields for robust view synthesis[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 16539-16548. |
[36] | LI Z P, LI L, MA Z Y, et al. READ: large-scale neural scene rendering for autonomous driving[EB/OL]. [2022-12-22]. https://arxiv.org/abs/2205.05509. |
[37] | XIE Z Y, ZHANG J G, LI W Y, et al. S-NeRF: neural radiance fields for street views[EB/OL]. [2023-01-22]. https://arxiv.org/abs/2303.00749. |
[38] | WANG Z A, SHEN T C, GAO J, et al. Neural fields meet explicit geometric representation for inverse rendering of urban scenes[EB/OL]. [2023-01-12]. https://arxiv.org/abs/2304.03266. |
[39] | XIANGLI Y B, XU L N, PAN X G, et al. BungeeNeRF: progressive neural radiance field for extreme multi-scale scene rendering[C]// European Conference on Computer Vision. Cham: Springer, 2022: 106-122. |
[40] | XU L N, XIANGLI Y B, PENG S D, et al. Grid-guided neural radiance fields for large urban scenes[EB/OL]. [2023-01-12]. https://arxiv.org/abs/2303.14001. |
[41] | PUMAROLA A, CORONA E, PONS-MOLL G, et al. D-NeRF: neural radiance fields for dynamic scenes[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021:10318-10327. |
[42] | TRETSCHK E, TEWARI A, GOLYANIK V, et al. Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 12939-12950. |
[43] | LI Z Q, NIKLAUS S, SNAVELY N, et al. Neural scene flow fields for space-time view synthesis of dynamic scenes[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 6498-6508. |
[44] | DU Y L, ZHANG Y N, YU H X, et al. Neural radiance flow for 4D view synthesis and video processing[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 14304-14314. |
[45] | GAO C, SARAF A, KOPF J, et al. Dynamic view synthesis from dynamic monocular video[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 5712-5721. |
[46] | LIU Y L, GAO C, MEULEMAN A, et al. Robust dynamic radiance fields[EB/OL]. [2023-01-22]. https://arxiv.org/abs/2301.02239. |
[47] | TEED Z, DENG J. RAFT: recurrent all-pairs field transforms for optical flow[C]// European Conference on Computer Vision. Cham: Springer, 2020: 402-419. |
[48] | PARK K, SINHA U, BARRON J T, et al. Nerfies: deformable neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 5845-5854. |
[49] |
KULIS B, JAIN P, GRAUMAN K. Fast similarity search for learned metrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2143-2157.
DOI PMID |
[50] | RAMAMOORTHI R, HANRAHAN P. An efficient representation for irradiance environment maps[C]// The 28th Annual Conference on COMPUTER GRAPHICS and Interactive Techniques. New York: ACM, 2001: 497-500. |
[51] | CHEN Z Q, FUNKHOUSER T, HEDMAN P, et al. MobileNeRF: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 16569-16578. |
[52] | WANG F, TAN S N, LI X H, et al. Mixed neural voxels for fast multi-view video synthesis[EB/OL]. [2022-12-12]. https://arxiv.org/abs/2212.00190. |
[53] | FRIDOVICH-KEIL S, MEANTI G, WARBURG F, et al. K-planes: explicit radiance fields in space, time, and appearance[EB/OL]. [2023-01-22]. https://arxiv.org/abs/2301.10241. |
[54] | CAO A, JOHNSON J. HexPlane: a fast representation for dynamic scenes[EB/OL]. [2023-01-22]. https://arxiv.org/abs/2301.09632. |
[55] | DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: an open urban driving simulator[EB/OL]. [2022-12-12]. https://arxiv.org/abs/1711.03938. |
[56] | YANG Z, CHEN Y, WANG J K, et al. UniSim: a neural closed-loop sensor simulator[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 1389-1399. |
[57] | LU F, XU Y, CHEN G, et al. Urban radiance field representation with deformable neural mesh primitives[EB/OL]. [2023-01-22]. https://arxiv.org/abs/2307.10776. |
[1] |
WANG Zhiru, CHANG Yuan, LU Peng, PAN Chengwei.
A review on neural radiance fields acceleration
[J]. Journal of Graphics, 2024, 45(1): 1-13.
|
[2] |
HUANG Jiahui, MU Taijiang.
A survey of dynamic 3D scene reconstruction
[J]. Journal of Graphics, 2024, 45(1): 14-25.
|
[3] |
SHI Min, WANG Bingqi, LI Zhaoxin, ZHU Dengming .
A seamless texture mapping method with highlight processing
[J]. Journal of Graphics, 2024, 45(1): 148-158.
|
[4] |
ZHOU Jingyi, ZHANG Qitong, FENG Jieqing.
Hybrid-structure based multi-view 3D scene reconstruction
[J]. Journal of Graphics, 2024, 45(1): 199-208.
|
[5] |
WANG Jiang’an, HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian.
Dense point cloud reconstruction network based on adaptive aggregation recurrent recursion
[J]. Journal of Graphics, 2024, 45(1): 230-239.
|
[6] | FAN Teng, YANG Hao, YIN Wen, ZHOU Dong-ming. Multi-scale view synthesis based on neural radiance field [J]. Journal of Graphics, 2023, 44(6): 1140-1148. |
[7] | XUE Hao-wei, WANG Mei-li. Hand reconstruction incorporating biomechanical constraints and multi-modal data [J]. Journal of Graphics, 2023, 44(4): 794-800. |
[8] | WANG Jiang-an, PANG Da-wei, HUANG Le, QING Lin-zhen. Dense point cloud reconstruction network using multi-scale feature recursive convolution [J]. Journal of Graphics, 2022, 43(5): 875-883. |
[9] | CHEN Tian-xiang, CHEN Bin . A fast construction method of 6-DOF field virtual environment based on panoramic video image [J]. Journal of Graphics, 2022, 43(5): 901-908. |
[10] | BAI Jing, MENG Qing-liang, XU Hao, FAN You-fu, YANG Zhan-yuan. ST-Rec3D: a structure and target-aware 3D reconstruction [J]. Journal of Graphics, 2022, 43(3): 469-477. |
[11] | CHANG Yuan, GAI Meng. A review on neural radiance fields based view synthesis [J]. Journal of Graphics, 2021, 42(3): 376-384. |
[12] | ZHANG Zhilin, MIAO Lanfang . 3D Scene Reconstruction System Based on Depth Image [J]. Journal of Graphics, 2018, 39(6): 1123-1129. |
[13] | ZOU Xiao1, CHEN Zhengming1,2, ZHU Hongqiang1, TONG Jing1,2. Implementation and Application of 3D Virtual Hairstyle Try-on System Based on Mobile Platform [J]. Journal of Graphics, 2018, 39(2): 309-316. |
[14] | YAO Li1,2, LI Xiaomin1, HAN Yingdong1. Virtual Viewpoint Synthesis of Quick Remove the Distortion [J]. Journal of Graphics, 2017, 38(4): 566-576. |
[15] | MIAO Yongwei1,2, FENG Xiaohong2, LIN Haibin2, ZHANG Xudong2, GAO Fei2. 2D to 3D: 3D Complex Mechanical Objects Generation from 2D Line Drawings [J]. Journal of Graphics, 2017, 38(2): 162-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||