Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 794-800.DOI: 10.11996/JG.j.2095-302X.2023040794
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
XUE Hao-wei1(), WANG Mei-li1,2,3(
)
Received:
2022-11-26
Accepted:
2023-04-26
Online:
2023-08-31
Published:
2023-08-16
Contact:
WANG Mei-li (1982-), professor, Ph.D. Her main research interests cover computer graphics, virtual reality, etc. E-mail:About author:
XUE Hao-wei (2000-), undergraduate. His main research interests cover computer vision and human-computer interaction. E-mail:haowei720@nwafu.edu.cn
Supported by:
CLC Number:
XUE Hao-wei, WANG Mei-li. Hand reconstruction incorporating biomechanical constraints and multi-modal data[J]. Journal of Graphics, 2023, 44(4): 794-800.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040794
Fig. 1 Display of 3D hand reconstruction results ((a) Input image 1; (b) Output result 1; (c) Mesh overlay 1; (d) Input image 2; (e) Output result 2; (f) Mesh overlay 2)
Method | AUC of PCK | |||
---|---|---|---|---|
DO | ED | STB | RHD | |
本文方法 | 0.953 | 0.823 | 0.896 | 0.950(*) |
文献[7] | 0.948 | 0.811 | 0.898(*) | 0.856(*) |
文献[3] | - | - | 0.998(*) | 0.920(*) |
文献[4] | 0.825 | - | 0.995(*) | 0.901(*) |
文献[17] | - | - | 0.996(*) | 0.943(*) |
文献[11] | 0.650 | - | 0.995(*) | 0.926(*) |
文献[8] | 0.912 | - | 0.994(*) | - |
文献[16] | 0.763 | 0.674 | 0.994(*) | - |
文献[5] | 0.672 | 0.543 | 0.994(*) | - |
文献[19] | 0.573 | - | 0.948(*) | 0.670(*) |
Table 1 Comparisons were made with state-of-the-art methods on four public datasets
Method | AUC of PCK | |||
---|---|---|---|---|
DO | ED | STB | RHD | |
本文方法 | 0.953 | 0.823 | 0.896 | 0.950(*) |
文献[7] | 0.948 | 0.811 | 0.898(*) | 0.856(*) |
文献[3] | - | - | 0.998(*) | 0.920(*) |
文献[4] | 0.825 | - | 0.995(*) | 0.901(*) |
文献[17] | - | - | 0.996(*) | 0.943(*) |
文献[11] | 0.650 | - | 0.995(*) | 0.926(*) |
文献[8] | 0.912 | - | 0.994(*) | - |
文献[16] | 0.763 | 0.674 | 0.994(*) | - |
文献[5] | 0.672 | 0.543 | 0.994(*) | - |
文献[19] | 0.573 | - | 0.948(*) | 0.670(*) |
序号 | Variants of our method | AUC of PCK | ||
---|---|---|---|---|
DO | ED | RHD | ||
1 | Full | 0.953±0 | 0.823±0 | 0.950±0 |
2 | w/o IRNet | 0.913±0 | 0.802±0.04 | 0.808±0.07 |
3 | w/o BMC | 0.930±5e−4 | 0.752±5e−4 | 0.925±0.04 |
4 | w/o MSSGesture | 0.926±0.05 | 0.823±0.10 | 0.809±0.11 |
5 | w/o 3DHandData | 0.873±0 | 0.712±0.02 | 0.738±0.04 |
Table 2 Ablation study
序号 | Variants of our method | AUC of PCK | ||
---|---|---|---|---|
DO | ED | RHD | ||
1 | Full | 0.953±0 | 0.823±0 | 0.950±0 |
2 | w/o IRNet | 0.913±0 | 0.802±0.04 | 0.808±0.07 |
3 | w/o BMC | 0.930±5e−4 | 0.752±5e−4 | 0.925±0.04 |
4 | w/o MSSGesture | 0.926±0.05 | 0.823±0.10 | 0.809±0.11 |
5 | w/o 3DHandData | 0.873±0 | 0.712±0.02 | 0.738±0.04 |
[1] | 童立靖, 李嘉伟. 一种基于改进PointNet++网络的三维手姿估计方法[J]. 图学学报, 2022, 43(5): 892-900. |
TONG L J, LI J W. A 3D hand pose estimation method based on improved PointNet++[J]. Journal of Graphics, 2022, 43(5): 892-900 (in Chinese). | |
[2] | TANG X, WANG T Y, FU C W. Towards accurate alignment in real-time 3D hand-mesh reconstruction[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 11698-11707. |
[3] | GE L H, REN Z, LI Y C, et al. 3D hand shape and pose estimation from a single RGB image[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10825-10834. |
[4] | ZHANG X, LI Q, MO H, et al. End-to-end hand mesh recovery from a monocular RGB image[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 2354-2364. |
[5] | IQBAL U, MOLCHANOV P, BREUEL T, et al. Hand pose estimation via latent 2.5D heatmap regression[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 125-143. |
[6] | CAI Y J, GE L H, CAI J F, et al. Weakly-supervised 3D hand pose estimation from monocular RGB images[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 678-694. |
[7] | ROMERO J, TZIONAS D, BLACK M J. Embodied hands: modeling and capturing hands and bodies together[J]. ACM Transactions on Graphics, 2017, 36(6): 245. 1-245.17. |
[8] | ZHOU Y X, HABERMANN M, XU W P, et al. Monocular real-time hand shape and motion capture using multi-modal data[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5345-5354. |
[9] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[10] | ARMAGAN A, GARCIA-HERNANDO G, BAEK S, et al. Measuringgeneralisation to unseen viewpoints, articulations, shapes and objects for 3D hand pose estimation under hand-object interaction[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 85-101. |
[11] | BAEK S, KIM K I, KIM T K. Pushing the envelope for RGB-based dense 3D hand pose estimation via neural rendering[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1067-1076. |
[12] | ALBRECHT I, HABER J, SEIDEL H P. Construction and animation of anatomically based human hand models[C]// 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Cham: Springer International Publishing, 2003: 98-109. |
[13] | SPURR A, IQBAL U, MOLCHANOV P, et al. Weakly supervised 3D hand pose estimation via biomechanical constraints[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 211-228. |
[14] | 范晶晶, 薛皓玮, 吴欣鸿, 等. 引入重影特征映射和通道注意力机制的手势识别算法[J]. 计算机辅助设计与图形学学报, 2022, 34(3): 403-414. |
FAN J J, XUE H W, WU X H, et al. Gesture recognition algorithm introducing ghost feature mapping and channel attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(3): 403-414 (in Chinese). | |
[15] | HASSON Y, VAROL G, TZIONAS D, et al. Learning joint reconstruction of hands and manipulated objects[EB/OL]. [2022-06-15]. https://arxiv.org/abs/1904.05767. |
[16] | ZIMMERMANN C, BROX T. Learning to estimate 3D hand pose from single RGB images[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 4913-4921. |
[17] | ZHANG J, JIAO J, CHEN M, et al. 3D hand pose tracking and estimation using stereo matching[EB/OL]. [2022-06-15]. https://arxiv.org/abs/1610.07214v1. |
[18] | SRIDHAR S, MUELLER F, ZOLLHÖFER M, et al. Real-time joint tracking of a hand manipulating an object from RGB-D input[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 294-310. |
[19] | BOUKHAYMA A, DE BEM R, TORR P H S. 3D hand shape and pose from images in the wild[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10835-10844. |
[1] | YAN Shan-wu, XIAO Hong-bing, WANG Yu, SUN Mei. Video anomaly detection combining pedestrian spatiotemporal information [J]. Journal of Graphics, 2023, 44(1): 95-103. |
[2] | GU Yu, ZHAO Jun. Research on image detection algorithm of freight train brake shoe bolt and brake shoe fault [J]. Journal of Graphics, 2023, 44(1): 88-94. |
[3] | ZHANG Chen-yang, CAO Yan-hua, YANG Xiao-zhong. Multi-focus image fusion method based on fractional wavelet combined with guided filtering [J]. Journal of Graphics, 2023, 44(1): 77-87. |
[4] | SHAO Ying-jie, YIN Hui, XIE Ying, HUANG Hua. A sketch-guided facial image completion network via selective recurrent inference [J]. Journal of Graphics, 2023, 44(1): 67-76. |
[5] | PAN Sen-lei, QIAN Wen-hua, CAO Jin-de, XU Dan. Learning attention for Dongba paintings emotion classification [J]. Journal of Graphics, 2023, 44(1): 59-66. |
[6] | SHAN Fang-mei, WANG Meng-wen, LI Min. Multi-scale convolutional neural network incorporating attention mechanism for intestinal polyp segmentation [J]. Journal of Graphics, 2023, 44(1): 50-58. |
[7] | ZHANG Qian, WANG Xia-li, WANG Wei-hao, WU Li-zhan, LI Chao. Cell counting method based on multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(1): 41-49. |
[8] | SHAO Wen-bin, LIU Yu-jie, SUN Xiao-rui, LI Zong-min. Cross modality person re-identification based on residual enhanced attention [J]. Journal of Graphics, 2023, 44(1): 33-40. |
[9] | PI Jun, LIU Yu-heng, LI Jiu-hao. Research on lightweight forest fire detection algorithm based on YOLOv5s [J]. Journal of Graphics, 2023, 44(1): 26-32. |
[10] | PEI Hui-ning, SHAO Xing-chen, TAN Zhao-yun, HUANG Xue-qin, BAI Zhong-hang. Prediction model of cultural image based on DE-GWO and SVR [J]. Journal of Graphics, 2023, 44(1): 184-193. |
[11] | FAN Zhen, LIU Xiao-jing, LI Xiao-bo, CUI Ya-chao. A homography estimation method robust to illumination and occlusion [J]. Journal of Graphics, 2023, 44(1): 166-176. |
[12] | LI Xiao-bo, LI Yang-gui, GUO Ning, FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
[13] | LIU Zhen-ye, CHEN Ren-jie, LIU Li-gang. Edge length based 3D shape interpolation [J]. Journal of Graphics, 2023, 44(1): 158-165. |
[14] | WANG Jia-dong, CAO Juan, CHEN Zhong-gui. Feature-preserving skeleton extraction algorithm for point clouds [J]. Journal of Graphics, 2023, 44(1): 146-157. |
[15] | WANG Yu-ping, ZENG Yi, LI Sheng-hui, ZHANG Lei. A Transformer-based 3D human pose estimation method [J]. Journal of Graphics, 2023, 44(1): 139-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||