Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 814-826.DOI: 10.11996/JG.j.2095-302X.2024040814
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
ZHU Baoxu(), LIU Mandan(
), ZHANG Wenting, XIE Lizhi
Received:
2024-03-14
Accepted:
2024-06-24
Online:
2024-08-31
Published:
2024-09-03
Contact:
LIU Mandan
About author:
First author contact:ZHU Baoxu (2000-), master student. His main research interests cover computer vision, virtual human generation. E-mail:Y30221036@mail.ecust.edu.cn
Supported by:
CLC Number:
ZHU Baoxu, LIU Mandan, ZHANG Wenting, XIE Lizhi. Full process generation method of high-resolution face texture map[J]. Journal of Graphics, 2024, 45(4): 814-826.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040814
Fig. 1 Schematic diagram of the entire process for generating facial UV texture map ((a) Input facial image; (b) Template texture map; (c) Keypoint-mapped image; (d) Translation network generate image; (e) Visibility mask map; (f) Image after extracting visibility mask; (g) Template texture image after color transformation; (h) Final texture map)
Fig. 2 Schematic diagram of key point detection and mapping of the original image ((a) Input facial image; (b) Image after keypoint detection; (c) Template texture map; (d) Template texture map after keypoint detection; (e) Image during the mapping process; (f) Keypoint-mapped image)
Fig. 3 Schematic diagram of key point detection and mapping of the target map ((a) Input facial image; (b) Image after keypoint detection; (c) Template texture map; (d) Template texture map after keypoint detection; (e) Image during the mapping process; (f) Keypoint-mapped image)
Fig. 8 Overall network structure ((a) Input image; (b) Translate network generate image (1024×1024); (b1) The image obtained by downsampling the generate image (512×512); (b2) The image obtained by downsampling the generate image (256×256); (c) Translate network target image (1024×1024); (c1) The image obtained by downsampling the target image (512×512); (c2) The image obtained by downsampling the target image (256×256))
Fig. 9 UV texture generates a visualization image of the whole process ((a) Input facial images; (b) Keypoint-mapped images; (c) Translation network generate images; (d) Final texture map)
Fig. 10 3D visualization of UV texture map of different faces ((a) Input facial images; (b) Frontal face 3D visualization; (c) 3D visualization of the left side of the face; (d) 3D visualization of the right side of the face)
Fig. 11 (Have/No) Schematic diagram of STLNet and Soft-AdaLIN ((a1~a3) No Soft-AdaLIN and STLNet; (b1~b3) Embed Soft-AdaLIN; (c1~c3) Embed STLNet; (d1~d3) Embed Soft-AdaLIN and STLNet)
Fig. 12 Pairs of deflected faces -- UV texture diagram ((a) Input face (head left deflection); (b) Texture image (head left deflection); (c) Input face (head right deflection); (d) Texture image (head right deflection))
网络 | 网络(a) (无Soft-AdaLIN及STLNet) | 网络(b) (嵌入Soft-AdaLIN) | 网络(c) (嵌入STLNet) | 网络(d) (嵌入Soft-AdaLIN及STLNet) |
---|---|---|---|---|
PSNR | 34.460 3 | 34.610 2 | 34.231 4 | 34.687 5 |
SSIM(source) | 0.909 7 | 0.911 9 | 0.911 4 | 0.912 7 |
SSIM(target) | 0.973 6 | 0.974 9 | 0.974 9 | 0.975 7 |
LPIPS | 0.079 3 | 0.082 2 | 0.080 0 | 0.075 7 |
Table 1 Quantitative comparison of networks with and without STLNet and Soft-AdaLIN
网络 | 网络(a) (无Soft-AdaLIN及STLNet) | 网络(b) (嵌入Soft-AdaLIN) | 网络(c) (嵌入STLNet) | 网络(d) (嵌入Soft-AdaLIN及STLNet) |
---|---|---|---|---|
PSNR | 34.460 3 | 34.610 2 | 34.231 4 | 34.687 5 |
SSIM(source) | 0.909 7 | 0.911 9 | 0.911 4 | 0.912 7 |
SSIM(target) | 0.973 6 | 0.974 9 | 0.974 9 | 0.975 7 |
LPIPS | 0.079 3 | 0.082 2 | 0.080 0 | 0.075 7 |
方法 | OsTec | FFHQ-UV | 本文 |
---|---|---|---|
PSNR | 12.577 0 | 12.274 8 | 12.586 7 |
SSIM | 0.730 5 | 0.693 4 | 0.748 6 |
LPIPS | 0.743 6 | 0.705 8 | 0.692 8 |
Table 2 Quantitative comparison of average PSNR, SSIM and LPIPS of each method
方法 | OsTec | FFHQ-UV | 本文 |
---|---|---|---|
PSNR | 12.577 0 | 12.274 8 | 12.586 7 |
SSIM | 0.730 5 | 0.693 4 | 0.748 6 |
LPIPS | 0.743 6 | 0.705 8 | 0.692 8 |
Fig. 13 Diagram of each stage from inputting a face to generating the final face UV texture ((a) Input facial image; (b) Keypoint-mapped image; (c) Translation networks generate texture map; (d) Final face UV texture map)
Fig. 14 Visual comparison with Normalized Avatar Synthesis and FFHQ-UV ((a) Input facial images; (b) Reference [28]; (c) Reference [14]; (d) Ours; (e) Corresponding texture image)
[1] | 岳芙蓉. 基于深度学习的单视图三维人脸重建模型研究[D]. 成都: 电子科技大学, 2022. |
YUE F R. Research on single-view 3D face reconstruction model based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese). | |
[2] | 彭政夫. 基于单张图片的真实感三维人脸纹理重建研究[D]. 广州: 华南理工大学, 2022. |
PENG Z F. Research on realistic 3D face texture reconstruction based on single image[D]. Guangzhou: South China University of Technology, 2022 (in Chinese). | |
[3] | 韩漾宏. 基于单张图片的三维人脸重建[D]. 重庆: 西南大学, 2022. |
HAN Y H. Single image based 3D face reconstruction[D]. Chongqing: Southwest University, 2022 (in Chinese). | |
[4] | BLANZ V, VETTER T. A morphable model for the synthesis of 3D faces[M]// Seminal Graphics Papers: Pushing the Boundaries, Volume 2. New York: ACM, 2023: 157-164. |
[5] | HUBER P, HU G S, TENA R, et al. A multiresolution 3D morphable face model and fitting framework[C]// The 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Setúbal: SCITEPRESS - Science and Technology Publications, 2016, 5: 79-86. |
[6] | LI T Y, BOLKART T, BLACK M J, et al. Learning a model of facial shape and expression from 4D scans[J]. ACM Transactions on Graphics, 2017, 36(6): 1-17. |
[7] | DENG J K, CHENG S Y, XUE N N, et al. UV-GAN: adversarial facial UV map completion for pose-invariant face recognition[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7093-7102. |
[8] | YIN X N, HUANG D, FU Z H, et al. Weakly-supervised photo-realistic texture generation for 3D face reconstruction[C]// 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition. New York: IEEE Press, 2023: 1-8. |
[9] | YANG M X, GUO J W, CHENG Z L, et al. Self-supervised re-renderable facial albedo reconstruction from single image[EB/OL]. [2024-01-18]. http://arxiv.org/abs/2111.08282. |
[10] | 刘洋, 樊养余, 郭哲, 等. 单幅人脸图像的全景纹理图生成方法[J]. 中国图象图形学报, 2022, 27(2): 602-613. |
LIU Y, FAN Y Y, GUO Z, et al. Single face image-based panoramic texture map generation[J]. Journal of Image and Graphics, 2022, 27(2): 602-613 (in Chinese). | |
[11] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[12] | GECER B, PLOUMPIS S, KOTSIA I, et al. GANFIT: generative adversarial network fitting for high fidelity 3D face reconstruction[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 1155-1164. |
[13] | GECER B, DENG J K, ZAFEIRIOU S. OSTeC: one-shot texture completion[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7624-7634. |
[14] | BAI H R, KANG D, ZHANG H X, et al. FFHQ-UV: normalized facial UV-texture dataset for 3D face reconstruction[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 362-371. |
[15] | KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8110-8119. |
[16] | PÉREZ P, GANGNET M, BLAKE A. Poisson image editing[M]// Seminal Graphics Papers: Pushing the Boundaries, Volume 2. New York: ACM, 2023: 577-582. |
[17] | KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4401-4410. |
[18] | KARTYNNIK Y, ABLAVATSKI A, GRISHCHENKO I, et al. Real-time facial surface geometry from monocular video on mobile GPUs[EB/OL]. [2024-01-18]. http://arxiv.org/abs/1907.06724. |
[19] | ZHU L Y, JI D Y, ZHU S P, et al. Learning statistical texture for semantic segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 12537-12546. |
[20] | HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621. |
[21] | KIM J, KIM M, KANG H, et al. U-GAT-IT: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[EB/OL]. [2024-01-18]. http://arxiv.org/abs/1907.10830. |
[22] | WANG T C, LIU M Y, ZHU J Y, et al. High-resolution image synthesis and semantic manipulation with conditional GANs[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8798-8807. |
[23] | ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5967-5976. |
[24] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-01-18]. http://arxiv.org/abs/1409.1556. |
[25] | HORÉ A, ZIOU D. Image quality metrics:PSNR vs. SSIM[C]// 2010 20th International Conference on Pattern Recognition. New York: IEEE Press, 2010: 2366-2369. |
[26] | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612. |
[27] | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 586-595. |
[28] | LUO H W, NAGANO K, KUNG H W, et al. Normalized avatar synthesis using StyleGAN and perceptual refinement[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11657-11667. |
[1] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[2] | SHI Min, WANG Bingqi, LI Zhaoxin, ZHU Dengming. A seamless texture mapping method with highlight processing [J]. Journal of Graphics, 2024, 45(1): 148-158. |
[3] | SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network [J]. Journal of Graphics, 2023, 44(4): 710-717. |
[4] | FANG Hong-bo, WAN Guang, CHEN Zhong-hui, HUANG Yi-wei, ZHANG Wen-yong, XIE Ben-liang. Offline handwriting mathematical symbol recognition based on improved YOLOv5s [J]. Journal of Graphics, 2022, 43(3): 387-395. |
[5] | WANG Yu-jin, XIE Cheng, YU Bei-bei, XIANG Hong-xin, LIU Qing . Attribute and graph semantic reinforcement based zero-shot learning for image recognition [J]. Journal of Graphics, 2021, 42(6): 899-907. |
[6] | LIN Sen , LIU Xu. Underwater image enhancement algorithm using gated fusion generative adversarial network [J]. Journal of Graphics, 2021, 42(6): 948-956. |
[7] | FAN Lin-long , LI Yi , ZHANG Xiao-qin. Generative adversarial network-based local facial stylization generation algorithm [J]. Journal of Graphics, 2021, 42(1): 44-51. |
[8] | FENG Qian-tai, YANG Meng, FU Hui. Leaf floating simulation based on GAN [J]. Journal of Graphics, 2020, 41(1): 27-34. |
[9] | LUO Qi-bin1,2, CAI Qiang1,2 . Blind Motion Image Deblurring Using Two-Frame Generative Adversarial Network [J]. Journal of Graphics, 2019, 40(6): 1056-1063. |
[10] | LI Nong-qin1, YANG Wei-xin2,3 . Handwritten Character Completion Based on Generative Adversarial Networks [J]. Journal of Graphics, 2019, 40(5): 878-884. |
[11] | LIU Long-fei, LI Sheng, LAI Shun-nan . Advance of Neural Network in Degraded Image Restoration [J]. Journal of Graphics, 2019, 40(2): 213-224. |
[12] | Zheng Guping, Xing Yue, Zhang Ronghua. A Real-Time Crater Rendering Method Based on GPU [J]. Journal of Graphics, 2016, 37(4): 451-456. |
[13] | WANG Zhi-qian, LI Hang, CHENG Zhi-quan, DANG Gang. A Novel Spatial BRDF Editing Algorithm [J]. Journal of Graphics, 2010, 31(4): 32-38. |
[14] | YUAN Bin. GPU Volume Rendering for 3D Non-uniform Rectilinear Grid [J]. Journal of Graphics, 2010, 31(3): 76-83. |
[15] | LIU Xiao-ping, XIE Wen-jun. Research on the Method of Simulation of Real-Time Water Surface Based on GPU [J]. Journal of Graphics, 2010, 31(1): 79-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||