Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 710-717.DOI: 10.11996/JG.j.2095-302X.2023040710
Previous Articles Next Articles
SHAO Jun-qi(), QIAN Wen-hua(
), XU Qi-hao
Received:
2022-11-17
Accepted:
2023-02-21
Online:
2023-08-31
Published:
2023-08-16
Contact:
QIAN Wen-hua (1980-), professor, Ph.D. His main research interests cover graphic image processing and computer vision, etc. E-mail:About author:
SHAO Jun-qi (1997-), master student. His main research interests cover computer vision and image generation. E-mail:619702616@qq.com
Supported by:
CLC Number:
SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network[J]. Journal of Graphics, 2023, 44(4): 710-717.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040710
网络 | SSIM | NIMA | FID |
---|---|---|---|
CGAN | 0.7026 | 5.154±(1.783) | 43.813 |
CGAN+MSE | 0.8152 | 5.652±(1.629) | 41.616 |
Table 1 Comparison after adding MSE function
网络 | SSIM | NIMA | FID |
---|---|---|---|
CGAN | 0.7026 | 5.154±(1.783) | 43.813 |
CGAN+MSE | 0.8152 | 5.652±(1.629) | 41.616 |
模块组成结构 | 评价指标 | |||
---|---|---|---|---|
Front | Backend | Residual | SSIM | FID |
3 | 3 | 9 | 0.6919 | 55.306 |
3 | 3 | 12 | 0.7263 | 50.838 |
4 | 4 | 9 | 0.7441 | 43.810 |
4 | 4 | 12 | 0.8152 | 41.616 |
5 | 5 | 9 | 0.7714 | 46.761 |
Table 2 The effect of different numbers of convolutional blocks and residual blocks on the experimental results
模块组成结构 | 评价指标 | |||
---|---|---|---|---|
Front | Backend | Residual | SSIM | FID |
3 | 3 | 9 | 0.6919 | 55.306 |
3 | 3 | 12 | 0.7263 | 50.838 |
4 | 4 | 9 | 0.7441 | 43.810 |
4 | 4 | 12 | 0.8152 | 41.616 |
5 | 5 | 9 | 0.7714 | 46.761 |
网络 | Landscape image | CMP facade | ||||
---|---|---|---|---|---|---|
SSIM | NIMA | FID | SSIM | NIMA | FID | |
cyclegan | 0.618 9 | 5.066±(1.713) | 160.949 | 0.169 | 5.373±(1.522) | 122.999 |
Pix2pix | 0.742 7 | 5.446±(1.765) | 68.385 | 0.135 | 5.247±(1.589) | 252.194 |
NICE-GAN | - | - | - | 0.120 | 5.476±(1.650) | 100.000 |
CRGAN | 0.815 2 | 5.652±(1.629) | 41.616 | 0.419 | 5.562±(1.571) | 92.819 |
Table 3 Method comparative analysis
网络 | Landscape image | CMP facade | ||||
---|---|---|---|---|---|---|
SSIM | NIMA | FID | SSIM | NIMA | FID | |
cyclegan | 0.618 9 | 5.066±(1.713) | 160.949 | 0.169 | 5.373±(1.522) | 122.999 |
Pix2pix | 0.742 7 | 5.446±(1.765) | 68.385 | 0.135 | 5.247±(1.589) | 252.194 |
NICE-GAN | - | - | - | 0.120 | 5.476±(1.650) | 100.000 |
CRGAN | 0.815 2 | 5.652±(1.629) | 41.616 | 0.419 | 5.562±(1.571) | 92.819 |
[1] |
CHEN M H, ZHAO S, LIU H F, et al. Adversarial-learned loss for domain adaptation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3521-3528.
DOI URL |
[2] | JIANG X, LAO Q C, MATWIN S, et al. Implicit class-conditioned domain alignment for unsupervised domain adaptation[C]// The 37th International Conference on Machine Learning. New York: ACM, 2020: 4816-4827. |
[3] |
ZHANG X L, SONG H H, ZHANG K H, et al. Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning[J]. Neurocomputing, 2020, 398: 531-538.
DOI URL |
[4] |
KIM H J, LEE D. Image denoising with conditional generative adversarial networks (CGAN) in low dose chest images[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161914.
DOI URL |
[5] | JOSE A, FRANCIS A. Reversible colour density compression of images using cGANs[EB/OL]. (2021-06-19) [2022-07-04]. https://arxiv.org/abs/2106.10542. |
[6] | 黄凯奇, 赵鑫, 李乔哲, 等. 视觉图灵: 从人机对抗看计算机视觉下一步发展[J]. 图学学报, 2021, 42(3): 339-348. |
HUANG K Q, ZHAO X, LI Q Z, et al. Visual Turing: the next development of computer vision in the view of human- computer gaming[J]. Journal of Graphics, 2021, 42(3): 339-348 (in Chinese). | |
[7] | 林晓, 屈时操, 黄伟, 等. 显著区域保留的图像风格迁移算法[J]. 图学学报, 2021, 42(2): 190-197. |
LIN X, QU S C, HUANG W, et al. Style transfer algorithm for salient region preservation[J]. Journal of Graphics, 2021, 42(2): 190-197 (in Chinese). | |
[8] | 任好盼, 王文明, 危德健, 等. 基于高分辨率网络的人体姿态估计方法[J]. 图学学报, 2021, 42(3): 432-438. |
REN H P, WANG W M, WEI D J, et al. Human pose estimation based on high-resolution net[J]. Journal of Graphics, 2021, 42(3): 432-438 (in Chinese). | |
[9] | 李彬, 王平, 赵思逸. 基于双重注意力机制的图像超分辨重建算法[J]. 图学学报, 2021, 42(2): 206-215. |
LI B, WANG P, ZHAO S Y. Image super-resolution reconstruction based on dual attention mechanism[J]. Journal of Graphics, 2021, 42(2): 206-215 (in Chinese). | |
[10] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
DOI URL |
[11] | KANG M, PARK J. Contragan: contrastive learning for conditional image generation[J]. Advances in Neural Information Processing Systems, 2020, 33(1): 21357-21369. |
[12] | KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 4396-4405. |
[13] | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-04) [2022-07-14]. https://arxiv.org/abs/1411.1784. |
[14] | MIYATO T, KOYAMA M. cGANs with projection discriminator[EB/OL]. (2018-08-15) [2022-07-14]. https://arxiv.org/abs/1802.05637. |
[15] | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]// The 30th International Conference on Neural Information Processing Systems. Barcelona: MIT Press, 2016: 2234-2242. |
[16] | ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5967-5976. |
[17] | LI C, WAND M. Combining Markov random fields and convolutional neural networks for image synthesis[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2479-2486. |
[18] | HU S M, LIANG D, YANG G Y, et al. Jittor: a novel deep learning framework with meta-operators and unified graph execution[J]. Science China Information Sciences, 2020, 63(12): 1-21. |
[19] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
DOI URL |
[20] |
TALEBI H, MILANFAR P. NIMA: neural image assessment[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3998-4011.
DOI URL |
[21] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2242-2251. |
[22] | CHEN R, HUANG W, HUANG B, et al. Reusing discriminators for encoding: Towards unsupervised image-to-image translation[C]// The 33rd IEEE/CVF conference on computer vision and pattern recognition. Washington: IEEE Computer Society Press, 2020: 8168-8177. |
[1] |
YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming.
Reference based transformer texture migrates depth imagessuper resolution reconstruction
[J]. Journal of Graphics, 2023, 44(5): 861-867.
|
[2] |
DANG Hong-she, XU Huai-biao, ZHANG Xuan-de.
Deep learning stereo matching algorithm fusing structural information
[J]. Journal of Graphics, 2023, 44(5): 899-906.
|
[3] |
ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji.
Multi-fitting detection method for transmission lines based onimplicit spatial knowledge fusion
[J]. Journal of Graphics, 2023, 44(5): 918-927.
|
[4] |
YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan.
A local optimization generation model for image inpainting
[J]. Journal of Graphics, 2023, 44(5): 955-965.
|
[5] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[6] | CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX [J]. Journal of Graphics, 2023, 44(4): 677-690. |
[7] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[8] | GUO Yin-hong, WANG Li-chun, LI Shuang. Image feature matching based on repeatability and specificity constraints [J]. Journal of Graphics, 2023, 44(4): 739-746. |
[9] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[10] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[11] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[12] | ZENG Wu, ZHU Heng-liang, XING Shu-li, LIN Jiang-hong, MAO Guo-jun. Saliency detection-guided for image data augmentation [J]. Journal of Graphics, 2023, 44(2): 260-270. |
[13] | LUO Qi-ming, WU Hao, XIA Xin, YUAN Guo-wu. Prediction of damaged areas in Yunnan murals using Dual Dense U-Net [J]. Journal of Graphics, 2023, 44(2): 304-312. |
[14] | LI Hong-an, ZHENG Qiao-xue, TAO Ruo-lin, ZHANG Min, LI Zhan-li, KANG Bao-sheng. Review of image super-resolutionbased on deep learning [J]. Journal of Graphics, 2023, 44(1): 1-15. |
[15] | SHAO Ying-jie, YIN Hui, XIE Ying, HUANG Hua. A sketch-guided facial image completion network via selective recurrent inference [J]. Journal of Graphics, 2023, 44(1): 67-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||