Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 856-867.DOI: 10.11996/JG.j.2095-302X.2024040856
• Industrial Design • Previous Articles Next Articles
WANG Fenghong1,2(), CHEN Dailin1,2, GAO Ziting1, WEN Zhaocheng1,2(
)
Received:
2023-11-15
Accepted:
2024-05-11
Online:
2024-08-31
Published:
2024-09-03
Contact:
WEN Zhaocheng
About author:
First author contact:WANG Fenghong (1972-), professor, Ph.D. Her main research interests cover user experience design, interactive interface design, virtual interaction design and usability evaluation. E-mail:fhwang@scut.edu.cn
Supported by:
CLC Number:
WANG Fenghong, CHEN Dailin, GAO Ziting, WEN Zhaocheng. The effect of spatial location of HUD’s road guidance on novice drivers[J]. Journal of Graphics, 2024, 45(4): 856-867.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040856
因素A:道路指引空间位置 | 因素B:路口类型 | 因素C:车流量 | 因素D:时间段 |
---|---|---|---|
A1悬浮空中的箭头 | B1三岔路口左转 | C1车流量小 | D1白天 |
A2贴合地面的箭头 | B2三岔路口右转 | C2车流量大 | D2黑夜 |
A3无道路引导 | B3十字路口左转 | ||
B4十字路口右转 | |||
B5环形道路右转 |
Table 1 Orthogonal experimental factors and levels
因素A:道路指引空间位置 | 因素B:路口类型 | 因素C:车流量 | 因素D:时间段 |
---|---|---|---|
A1悬浮空中的箭头 | B1三岔路口左转 | C1车流量小 | D1白天 |
A2贴合地面的箭头 | B2三岔路口右转 | C2车流量大 | D2黑夜 |
A3无道路引导 | B3十字路口左转 | ||
B4十字路口右转 | |||
B5环形道路右转 |
试验号 | 因素列 | 驾驶情境描述 | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 1 | 4 | 2 | 1 | 悬浮空中的箭头、十字路口右转、车流量大、白天 |
2 | 1 | 1 | 1 | 1 | 悬浮空中的箭头、三岔路口左转、车流量小、白天 |
3 | 1 | 1 | 1 | 2 | 悬浮空中的箭头、三岔路口左转、车流量小、黑夜 |
4 | 1 | 5 | 1 | 2 | 悬浮空中的箭头、环形道路右转、车流量小、黑夜 |
5 | 1 | 2 | 1 | 2 | 悬浮空中的箭头、三岔路口右转、车流量小、黑夜 |
6 | 1 | 3 | 2 | 2 | 悬浮空中的箭头、十字路口左转、车流量大、黑夜 |
7 | 1 | 4 | 1 | 1 | 悬浮空中的箭头、十字路口右转、车流量小、白天 |
8 | 1 | 3 | 1 | 1 | 悬浮空中的箭头、十字路口左转、车流量小、白天 |
9 | 1 | 5 | 2 | 1 | 悬浮空中的箭头、环形道路右转、车流量大、白天 |
10 | 1 | 2 | 2 | 1 | 悬浮空中的箭头、三岔路口右转、车流量大、白天 |
11 | 2 | 4 | 1 | 2 | 贴合地面的箭头、十字路口右转、车流量小、黑夜 |
12 | 2 | 1 | 1 | 2 | 贴合地面的箭头、三岔路口左转、车流量小、黑夜 |
13 | 2 | 2 | 1 | 1 | 贴合地面的箭头、三岔路口右转、车流量小、白天 |
14 | 2 | 5 | 1 | 1 | 贴合地面的箭头、环形道路右转、车流量小、白天 |
15 | 2 | 4 | 1 | 1 | 贴合地面的箭头、十字路口右转、车流量小、白天 |
16 | 2 | 3 | 1 | 1 | 贴合地面的箭头、十字路口左转、车流量小、白天 |
17 | 2 | 5 | 2 | 1 | 贴合地面的箭头、环形道路右转、车流量大、白天 |
18 | 2 | 3 | 2 | 2 | 贴合地面的箭头、十字路口左转、车流量大、黑夜 |
19 | 2 | 1 | 2 | 1 | 贴合地面的箭头、三岔路口左转、车流量大、白天 |
20 | 2 | 2 | 2 | 2 | 贴合地面的箭头、三岔路口右转、车流量大、黑夜 |
21 | 3 | 4 | 2 | 2 | 无道路引导、十字路口右转、车流量大、黑夜 |
22 | 3 | 2 | 1 | 1 | 无道路引导、三岔路口右转、车流量小、白天 |
23 | 3 | 3 | 1 | 1 | 无道路引导、十字路口左转、车流量小、白天 |
24 | 3 | 1 | 2 | 1 | 无道路引导、三岔路口左转、车流量大、白天 |
25 | 3 | 5 | 1 | 2 | 无道路引导、环形道路右转、车流量小、黑夜 |
Table 2 Table of orthogonal experimental
试验号 | 因素列 | 驾驶情境描述 | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 1 | 4 | 2 | 1 | 悬浮空中的箭头、十字路口右转、车流量大、白天 |
2 | 1 | 1 | 1 | 1 | 悬浮空中的箭头、三岔路口左转、车流量小、白天 |
3 | 1 | 1 | 1 | 2 | 悬浮空中的箭头、三岔路口左转、车流量小、黑夜 |
4 | 1 | 5 | 1 | 2 | 悬浮空中的箭头、环形道路右转、车流量小、黑夜 |
5 | 1 | 2 | 1 | 2 | 悬浮空中的箭头、三岔路口右转、车流量小、黑夜 |
6 | 1 | 3 | 2 | 2 | 悬浮空中的箭头、十字路口左转、车流量大、黑夜 |
7 | 1 | 4 | 1 | 1 | 悬浮空中的箭头、十字路口右转、车流量小、白天 |
8 | 1 | 3 | 1 | 1 | 悬浮空中的箭头、十字路口左转、车流量小、白天 |
9 | 1 | 5 | 2 | 1 | 悬浮空中的箭头、环形道路右转、车流量大、白天 |
10 | 1 | 2 | 2 | 1 | 悬浮空中的箭头、三岔路口右转、车流量大、白天 |
11 | 2 | 4 | 1 | 2 | 贴合地面的箭头、十字路口右转、车流量小、黑夜 |
12 | 2 | 1 | 1 | 2 | 贴合地面的箭头、三岔路口左转、车流量小、黑夜 |
13 | 2 | 2 | 1 | 1 | 贴合地面的箭头、三岔路口右转、车流量小、白天 |
14 | 2 | 5 | 1 | 1 | 贴合地面的箭头、环形道路右转、车流量小、白天 |
15 | 2 | 4 | 1 | 1 | 贴合地面的箭头、十字路口右转、车流量小、白天 |
16 | 2 | 3 | 1 | 1 | 贴合地面的箭头、十字路口左转、车流量小、白天 |
17 | 2 | 5 | 2 | 1 | 贴合地面的箭头、环形道路右转、车流量大、白天 |
18 | 2 | 3 | 2 | 2 | 贴合地面的箭头、十字路口左转、车流量大、黑夜 |
19 | 2 | 1 | 2 | 1 | 贴合地面的箭头、三岔路口左转、车流量大、白天 |
20 | 2 | 2 | 2 | 2 | 贴合地面的箭头、三岔路口右转、车流量大、黑夜 |
21 | 3 | 4 | 2 | 2 | 无道路引导、十字路口右转、车流量大、黑夜 |
22 | 3 | 2 | 1 | 1 | 无道路引导、三岔路口右转、车流量小、白天 |
23 | 3 | 3 | 1 | 1 | 无道路引导、十字路口左转、车流量小、白天 |
24 | 3 | 1 | 2 | 1 | 无道路引导、三岔路口左转、车流量大、白天 |
25 | 3 | 5 | 1 | 2 | 无道路引导、环形道路右转、车流量小、黑夜 |
试验号 | 因素列 | 试验结果 | ||||
---|---|---|---|---|---|---|
A | B | C | D | 方向盘转 角标准差 | 瞳孔直径 变异系数 | |
1 | 1 | 4 | 2 | 1 | 0.102 | 0.072 |
2 | 1 | 1 | 1 | 1 | 0.115 | 0.106 |
3 | 1 | 1 | 1 | 2 | 0.117 | 0.073 |
4 | 1 | 5 | 1 | 2 | 0.158 | 0.070 |
5 | 1 | 2 | 1 | 2 | 0.151 | 0.075 |
6 | 1 | 3 | 2 | 2 | 0.132 | 0.058 |
7 | 1 | 4 | 1 | 1 | 0.103 | 0.066 |
8 | 1 | 3 | 1 | 1 | 0.109 | 0.122 |
9 | 1 | 5 | 2 | 1 | 0.153 | 0.071 |
10 | 1 | 2 | 2 | 1 | 0.142 | 0.077 |
11 | 2 | 4 | 1 | 2 | 0.149 | 0.087 |
12 | 2 | 1 | 1 | 2 | 0.101 | 0.083 |
13 | 2 | 2 | 1 | 1 | 0.100 | 0.093 |
14 | 2 | 5 | 1 | 1 | 0.150 | 0.115 |
15 | 2 | 4 | 1 | 1 | 0.128 | 0.080 |
16 | 2 | 3 | 1 | 1 | 0.076 | 0.086 |
17 | 2 | 5 | 2 | 1 | 0.171 | 0.124 |
18 | 2 | 3 | 2 | 2 | 0.079 | 0.123 |
19 | 2 | 1 | 2 | 1 | 0.086 | 0.085 |
20 | 2 | 2 | 2 | 2 | 0.116 | 0.110 |
21 | 3 | 4 | 2 | 2 | 0.139 | 0.065 |
22 | 3 | 2 | 1 | 1 | 0.111 | 0.171 |
23 | 3 | 3 | 1 | 1 | 0.080 | 0.128 |
24 | 3 | 1 | 2 | 1 | 0.095 | 0.166 |
25 | 3 | 5 | 1 | 2 | 0.167 | 0.075 |
Table 3 Results of orthogonal experimental
试验号 | 因素列 | 试验结果 | ||||
---|---|---|---|---|---|---|
A | B | C | D | 方向盘转 角标准差 | 瞳孔直径 变异系数 | |
1 | 1 | 4 | 2 | 1 | 0.102 | 0.072 |
2 | 1 | 1 | 1 | 1 | 0.115 | 0.106 |
3 | 1 | 1 | 1 | 2 | 0.117 | 0.073 |
4 | 1 | 5 | 1 | 2 | 0.158 | 0.070 |
5 | 1 | 2 | 1 | 2 | 0.151 | 0.075 |
6 | 1 | 3 | 2 | 2 | 0.132 | 0.058 |
7 | 1 | 4 | 1 | 1 | 0.103 | 0.066 |
8 | 1 | 3 | 1 | 1 | 0.109 | 0.122 |
9 | 1 | 5 | 2 | 1 | 0.153 | 0.071 |
10 | 1 | 2 | 2 | 1 | 0.142 | 0.077 |
11 | 2 | 4 | 1 | 2 | 0.149 | 0.087 |
12 | 2 | 1 | 1 | 2 | 0.101 | 0.083 |
13 | 2 | 2 | 1 | 1 | 0.100 | 0.093 |
14 | 2 | 5 | 1 | 1 | 0.150 | 0.115 |
15 | 2 | 4 | 1 | 1 | 0.128 | 0.080 |
16 | 2 | 3 | 1 | 1 | 0.076 | 0.086 |
17 | 2 | 5 | 2 | 1 | 0.171 | 0.124 |
18 | 2 | 3 | 2 | 2 | 0.079 | 0.123 |
19 | 2 | 1 | 2 | 1 | 0.086 | 0.085 |
20 | 2 | 2 | 2 | 2 | 0.116 | 0.110 |
21 | 3 | 4 | 2 | 2 | 0.139 | 0.065 |
22 | 3 | 2 | 1 | 1 | 0.111 | 0.171 |
23 | 3 | 3 | 1 | 1 | 0.080 | 0.128 |
24 | 3 | 1 | 2 | 1 | 0.095 | 0.166 |
25 | 3 | 5 | 1 | 2 | 0.167 | 0.075 |
试验 指标 | 年龄/性别 | M (P25,P75) | 两独立样本 秩和检验 | |
---|---|---|---|---|
Z值 | P值 | |||
方向 盘转 角标 准差 | <25 (n=3) | 0.118 (0.096,0.201) | 0.300 | 0.786* |
≥25 (n=5) | 0.127 (0.115,0.155) | |||
男(n=4) | 0.121 (0.097,0.174) | 0.581 | 0.686* | |
女(n=4) | 0.124 (0.118,0.178) | |||
瞳孔 直径 变异 系数 | <25 (n=3) | 0.033 (0.022,0.054) | 2.100 | 0.036 |
≥25 (n=5) | 0.100 (0.077,0.122) | |||
男(n=4) | 0.091 (0.058,0.107) | -0.581 | 0.686* | |
女(n=4) | 0.061 (0.032,0.120) |
Table 4 Mann-Whitney U test for test group 10
试验 指标 | 年龄/性别 | M (P25,P75) | 两独立样本 秩和检验 | |
---|---|---|---|---|
Z值 | P值 | |||
方向 盘转 角标 准差 | <25 (n=3) | 0.118 (0.096,0.201) | 0.300 | 0.786* |
≥25 (n=5) | 0.127 (0.115,0.155) | |||
男(n=4) | 0.121 (0.097,0.174) | 0.581 | 0.686* | |
女(n=4) | 0.124 (0.118,0.178) | |||
瞳孔 直径 变异 系数 | <25 (n=3) | 0.033 (0.022,0.054) | 2.100 | 0.036 |
≥25 (n=5) | 0.100 (0.077,0.122) | |||
男(n=4) | 0.091 (0.058,0.107) | -0.581 | 0.686* | |
女(n=4) | 0.061 (0.032,0.120) |
试验指标 | 方向盘转角标准差 | |||
---|---|---|---|---|
因素 | A | B | C | D |
K1 | 1.282 | 0.621 | 1.216 | 1.722 |
K2 | 1.158 | 0.514 | 1.816 | 1.309 |
K3 | 0.591 | 0.799 | - | - |
K4 | - | 0.620 | - | - |
K5 | - | 0.477 | - | - |
k1 | 0.128 | 0.124 | 0.122 | 0.115 |
k2 | 0.116 | 0.103 | 0.121 | 0.131 |
k3 | 0.118 | 0.160 | - | - |
k4 | - | 0.124 | - | - |
k5 | - | 0.095 | - | - |
R | 0.012 | 0.064 | 0.001 | 0.016 |
折算系数d | 0.520 | 0.400 | 0.710 | 0.710 |
R' | 0.019 | 0.058 | 0.001 | 0.040 |
因素最佳水平 | 2 | 5 | 2 | 1 |
因素主次顺序 | B>D>A>C |
Table 5 Polar analysis table for standard deviation of steering wheel turn angle
试验指标 | 方向盘转角标准差 | |||
---|---|---|---|---|
因素 | A | B | C | D |
K1 | 1.282 | 0.621 | 1.216 | 1.722 |
K2 | 1.158 | 0.514 | 1.816 | 1.309 |
K3 | 0.591 | 0.799 | - | - |
K4 | - | 0.620 | - | - |
K5 | - | 0.477 | - | - |
k1 | 0.128 | 0.124 | 0.122 | 0.115 |
k2 | 0.116 | 0.103 | 0.121 | 0.131 |
k3 | 0.118 | 0.160 | - | - |
k4 | - | 0.124 | - | - |
k5 | - | 0.095 | - | - |
R | 0.012 | 0.064 | 0.001 | 0.016 |
折算系数d | 0.520 | 0.400 | 0.710 | 0.710 |
R' | 0.019 | 0.058 | 0.001 | 0.040 |
因素最佳水平 | 2 | 5 | 2 | 1 |
因素主次顺序 | B>D>A>C |
试验指标 | 瞳孔直径变异系数 | |||
---|---|---|---|---|
因素 | A | B | C | D |
K1 | 0.790 | 0.370 | 0.951 | 1.563 |
K2 | 0.987 | 0.512 | 1.432 | 0.819 |
K3 | 0.607 | 0.456 | - | - |
K4 | - | 0.526 | - | - |
K5 | - | 0.518 | - | - |
k1 | 0.079 | 0.074 | 0.095 | 0.104 |
k2 | 0.099 | 0.102 | 0.095 | 0.082 |
k3 | 0.121 | 0.091 | - | - |
k4 | - | 0.105 | - | - |
k5 | - | 0.104 | - | - |
R | 0.042 | 0.031 | 0.000 | 0.022 |
折算系数d | 0.520 | 0.400 | 0.710 | 0.710 |
R' | 0.064 | 0.028 | 0.001 | 0.056 |
因素最佳水平 | 1 | 1 | 1 | 2 |
因素主次顺序 | A>D>B>C |
Table 6 Polar analysis of variance table for pupil coefficient of variation
试验指标 | 瞳孔直径变异系数 | |||
---|---|---|---|---|
因素 | A | B | C | D |
K1 | 0.790 | 0.370 | 0.951 | 1.563 |
K2 | 0.987 | 0.512 | 1.432 | 0.819 |
K3 | 0.607 | 0.456 | - | - |
K4 | - | 0.526 | - | - |
K5 | - | 0.518 | - | - |
k1 | 0.079 | 0.074 | 0.095 | 0.104 |
k2 | 0.099 | 0.102 | 0.095 | 0.082 |
k3 | 0.121 | 0.091 | - | - |
k4 | - | 0.105 | - | - |
k5 | - | 0.104 | - | - |
R | 0.042 | 0.031 | 0.000 | 0.022 |
折算系数d | 0.520 | 0.400 | 0.710 | 0.710 |
R' | 0.064 | 0.028 | 0.001 | 0.056 |
因素最佳水平 | 1 | 1 | 1 | 2 |
因素主次顺序 | A>D>B>C |
Fig. 10 Effect of factor interactions on the standard deviation of steering wheel turn angle ((a) Interaction of sroad guide spatial location and intersection turns; (b) Interaction of road guide spatial location and traffic flow; (c) Interaction of road guide spatial location and time periods; (d) Interaction of intersection turns and traffic flow; (e) Interaction of intersection turns and time periods; (f) Interaction of traffic flow and time periods)
Fig. 11 Effect of factor interactions on pupil coefficient of variation ((a) Interaction of sroad guide spatial location and intersection turns; (b) Interaction of road guide spatial location and traffic flow; (c) Interaction of road guide spatial location and time periods; (d) Interaction of intersection turns and traffic flow; (e) Interaction of intersection turns and time periods; (f) Interaction of traffic flow and time periods)
[1] | 冯自力, 杨振. 增强现实平视显示行人预警系统的视觉编码设计研究[J]. 包装工程, 2023, 44(12): 126-135. |
FENG Z L, YANG Z. Visual coding design of augmented reality head-up display pedestrian warning system[J]. Packaging Engineering, 2023, 44(12): 126-135 (in Chinese). | |
[2] | 刘文超, 周志强, 牛清宁, 等. 国内外低驾龄驾驶人安全管理对比研究[J]. 道路交通与安全, 2015, 15(5): 36-42. |
LIU W C, ZHOU Z Q, NIU Q N, et al. Comparative study on safety management of novice drivers between China and other countries[J]. Road Traffic & Safety, 2015, 15(5): 36-42 (in Chinese). | |
[3] | 刘雪梅, 向往. 不同驾龄新手驾驶员感知能力认知偏差分析[J]. 黑龙江科学, 2020, 11(22): 162-164. |
LIU X M, XIANG W. Analysis of perception ability cognitive bias of green hands divers of different driving years[J]. Heilongjiang Science, 2020, 11(22): 162-164 (in Chinese). | |
[4] | ZHANG W H, WANG Y J, FENG Z X, et al. A method to improve the hazard perception of young novice drivers based on Bandura’s observational learning theory: supplement to expert commentary training[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 85: 133-149. |
[5] | CRUNDALL D E, UNDERWOOD G. Effects of experience and processing demands on visual information acquisition in drivers[J]. Ergonomics, 1998, 41(4): 448-458. |
[6] | 李宏汀, 徐伟丹, 葛列众, 等. 影响驾驶安全的驾驶员注意模式研究述评[J]. 心理科学进展, 2010, 18(9): 1413-1419. |
LI H T, XU W D, GE L Z, et al. Review of research on the visual attention model of driver[J]. Advances in Psychological Science, 2010, 18(9): 1413-1419 (in Chinese). | |
[7] |
MOURANT R R, ROCKWELL T H. Strategies of visual search by novice and experimental drivers[J]. Human Factors, 1972, 14(4): 325-335.
PMID |
[8] | 马艺丹, 孙龙. 驾驶员自我评估的危险知觉技能对事故可能性的影响[J]. 人类工效学, 2018, 24(2): 14-16, 31. |
MA Y D, SUN L. Effect of driver’s self-assessment skill on the crashlikelihood[J]. Chinese Journal of Ergonomics, 2018, 24(2): 14-16, 31 (in Chinese). | |
[9] | 时晓杰, 高现念, 贾旺, 等. 基于驾驶员特性的重特大交通事故研究[J]. 黑龙江交通科技, 2018, 41(2): 171-173. |
SHI X J, GAO X N, JIA W, et al. The study of heavy traffic accidents based on characteristic of drivers[J]. Communications Science and Technology Heilongjiang, 2018, 41(2): 171-173 (in Chinese). | |
[10] | 江小浦, 幸翔, 胡书可. 汽车中控台设计中的安全性原则研究[J]. 包装工程, 2020, 41(12): 38-43. |
JIANG X P, XING X, HU S K. Safety principles in design of automobile central panel[J]. Packaging Engineering, 2020, 41(12): 38-43 (in Chinese). | |
[11] |
刘新月, 谢文军, 尹成胜, 等. 城市交通事故的局部相关性可视分析方法[J]. 图学学报, 2019, 40(5): 843-851.
DOI |
LIU X Y, XIE W J, YIN C S, et al. Visual analytics method for local correlation of urban traffic accidents[J]. Journal of Graphics, 2019, 40(5): 843-851 (in Chinese). | |
[12] |
许阳, 张良涛, 王振刚, 等. 基于三维仿真的公路、铁路平行或交叉路段防眩设施自动评估[J]. 图学学报, 2023, 44(4): 818-827.
DOI |
XU Y, ZHANG L T, WANG Z G, et al. Research on key technologies of automatic evaluation and design of road light barriers based on 3D simulation[J]. Journal of Graphics, 2023, 44(4): 818-827 (in Chinese).
DOI |
|
[13] |
BROOKHUIS K A, DE WAARD D. The use of psychophysiology to assess driver status[J]. Ergonomics, 1993, 36(9): 1099-1110.
PMID |
[14] | 袁伟, 郭应时, 付锐, 等. 城市道路类型对驾驶人工作负荷的影响[J]. 长安大学学报: 自然科学版, 2014, 34(5): 95-100. |
YUAN W, GUO Y S, FU R, et al. Influence of urban road section types on drivers' workload[J]. Journal of Chang’an University: Natural Science Edition, 2014, 34(5): 95-100 (in Chinese). | |
[15] | 郭子彬, 陈慧, 夏韬锴, 等. 弯道工况下驾驶员主观风险感知的量化研究[J]. 汽车工程, 2022, 44(9): 1447-1455. |
GUO Z B, CHEN H, XIA T K, et al. Study on quantification of driver’s subjective risk perception in curve driving condition[J]. Automotive Engineering, 2022, 44(9): 1447-1455 (in Chinese). | |
[16] | 毕建彬. 道路交通事故的人因分析与驾驶员可靠性研究[D]. 北京: 北京交通大学, 2012. |
BI J B. Research of driver reliability and human factors analysis in road traffic accidents[D]. Beijing: Beijing Jiaotong University, 2012 (in Chinese). | |
[17] | 连冠, 尚婷, 夏瑜, 等. 隧道群不同间距对驾驶人视觉特性影响研究[J]. 昆明理工大学学报: 自然科学版, 2023, 48(5): 179-189. |
LIAN G, SHANG T, XIA Y, et al. Influence of different spacing of tunnel group on drivers’ visual characteristics[J]. Journal of Kunming University of Science and Technology: Natural Science, 2023, 48(5): 179-189 (in Chinese). | |
[18] |
马永锋, 喻铃华, 陈淑燕, 等. 自然驾驶状态下重型工程车驾驶人驾驶稳定性分析[J]. 中国公路学报, 2022, 35(1): 169-179.
DOI |
MA Y F, YU L H, CHEN S Y, et al. Analysis of driving- stability factors for heavy-duty truck drivers under naturalistic driving conditions[J]. China Journal of Highway and Transport, 2022, 35(1): 169-179 (in Chinese). | |
[19] |
阎莹, 王虹婷, 万利, 等. 基于因子分析与熵值法的不同隧道侧向宽度下驾驶负荷模型[J]. 中国公路学报, 2023, 36(2): 190-202.
DOI |
YAN Y, WANG H T, WAN L, et al. Driver load model under different tunnel lateral widths based on factor analysis and entropy method[J]. China Journal of Highway and Transport, 2023, 36(2): 190-202 (in Chinese).
DOI |
|
[20] | 孟云伟, 张熙衍, 青光焱, 等. 山区双车道公路路域空间中驾驶视觉心生理负荷特性研究[J]. 武汉理工大学学报: 交通科学与工程版, 2021, 45(3): 403-407. |
MENG Y W, ZHANG X Y, QING G Y, et al. Research on the driving visual psychophysiological load of various landscapes in mountainous two-lane highway[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2021, 45(3): 403-407 (in Chinese). | |
[21] |
COOPER J M, MEDEIROS-WARD N, STRAYER D L. The impact of eye movements and cognitive workload on lateral position variability in driving[J]. Human Factors, 2013, 55(5): 1001-1014.
PMID |
[22] | 刘敏. 雨雾低能见度环境下基于驾驶人精神负荷的驾驶稳定性状态识别研究[D]. 广州: 华南理工大学, 2017. |
LIU M. Research on driving stability state distinguish based on the divers’ mental workload under rain-fog low visibilty environment[D]. Guangzhou: South China University of Technology, 2017 (in Chinese). | |
[23] | 孙向红, 杨帆. 车辆驾驶心理负荷测量工具的测评与发展: 一个现场研究的尝试[J]. 人类工效学, 2008, 14(3): 27-31. |
SUN X H, YANG F. A new method to measure drivers' mental workload—a field study in China[J]. Chinese Journal of Ergonomics, 2008, 14(3): 27-31 (in Chinese). | |
[24] |
张香, 王戡, 胡雄. 驾驶员状态监测目标动作报警阈值的确定[J]. 汽车实用技术, 2023, 48(9): 143-147.
DOI |
ZHANG X, WANG K, HU X. Determination of reasonable threshold value of target action alarm in driver condition monitoring[J]. Automobile Applied Technology, 2023, 48(9): 143-147 (in Chinese).
DOI |
|
[25] | 李想, 任瀚堃. 基于驾驶模拟器的通讯软件分心驾驶研究[J]. 综合运输, 2022, 44(1): 83-88. |
LI X, REN H K. Distracted driving by communication software based on driving simulator[J]. China Transportation Review, 2022, 44(1): 83-88 (in Chinese). | |
[26] | 李青林, 彭金栓, 付锐, 等. 基于驾驶员操纵特性和交通环境状态的换道行为预测[J]. 科学技术与工程, 2019, 19(12): 368-377. |
LI Q L, PENG J S, FU R, et al. Prediction of lane-changing behavior based on driver’s handling characteristics and traffic environment status[J]. Science Technology and Engineering, 2019, 19(12): 368-377 (in Chinese). | |
[27] | LEE S, KHAN M Q, HUSEN M N. Continuous car driving intent detection using structural pattern recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1001-1013. |
[28] | 吕贞, 戚春华, 朱守林. 基于眼动行为的草原公路驾驶人精神负荷变化规律[J]. 科学技术与工程, 2021, 21(21): 9160-9167. |
LÜ Z, QI C H, ZHU S L. The mental load of drivers on the prairie highway based on the eye movement behavior[J]. Science Technology and Engineering, 2021, 21(21): 9160-9167 (in Chinese). | |
[29] | 王雪松, 李飞虎. 基于驾驶模拟实验的眼部指标与疲劳分级[J]. 同济大学学报: 自然科学版, 2015, 43(2): 226-231, 264. |
WANG X S, LI F H. Eye indicators and drowsy level analysis based on driving simulator[J]. Journal of Tongji University: Natural Science, 2015, 43(2): 226-231, 264 (in Chinese). | |
[30] | 罗裕祥, 潘雨帆. 基于信息融合的驾驶警觉度识别方法研究[J]. 综合运输, 2020, 42(10): 71-77. |
LUO Y X, PAN Y F. Recognition method of driving alertness based on the fusion of information[J]. China Transportation Review, 2020, 42(10): 71-77 (in Chinese). | |
[31] | 刘川. 低龄与低驾龄驾驶员行为特征分析[D]. 成都: 西南交通大学, 2021. |
LIU C. Analysis of behavior characteristics of low age and low driving age drivers[D]. Chengdu: Southwest Jiaotong University, 2021 (in Chinese). | |
[32] |
MCCARTT A T, HELLINGA L A, BRATIMAN K A. Cell phones and driving: review of research[J]. Traffic Injury Prevention, 2006, 7(2): 89-106.
PMID |
[33] | COOPER P J, ZHENG Y, RICHARD C, et al. The impact of hands-free message reception/response on driving task performance[J]. Accident Analysis & Prevention, 2003, 35(1): 23-35. |
[34] | 徐仲安, 王天保, 李常英, 等. 正交试验设计法简介[J]. 科技情报开发与经济, 2002(5): 148-150. |
XU Z A, WANG T B, LI C Y, et al. Brief introduction to the orthogonal test design[J]. Sci/tech Information Development & Economy, 2002(5): 148-150 (in Chinese). | |
[35] | 姚盼, 袁艳平, 孙亮亮, 等. 基于交互正交试验的热水系统太阳能保证率影响因素研究[J]. 太阳能学报, 2017, 38(2): 400-408. |
YAO P, YUAN Y P, SUN L L, et al. Research of factors affecting solar fraction of shws based on interactive orthogonal experiment[J]. Acta Energiae Solaris Sinica, 2017, 38(2): 400-408 (in Chinese). | |
[36] | 唐佳丽, 徐章韬. 正交试验中的极差分析与方差分析[J]. 中学数学, 2017(9): 31-34. |
TANG J L, XU Z T. Range analysis and variance analysis in orthogonal test[J]. Middle-school Mathematics, 2017(9): 31-34 (in Chinese). | |
[37] | 秦杰, 薛政定. 关于不等水平正交试验设计分析方法的探讨[J]. 麻纺织技术, 1983, 6(2): 33-42. |
QIN J, XUE Z D. Discussion on design and analysis method of unequal level orthogonal experiment[J]. Ramie Textile Science Technology Ramie Textile Science Technology, 1983, 6(2): 33-42 (in Chinese). | |
[38] | 张续, 吴红波, 朱可可, 等. 基于SPSS软件优化耐低温乳化炸药配方研究[J]. 爆破器材, 2020, 49(6): 42-47. |
ZHANG X, WU H B, ZHU K K, et al. Optimization of low temperature resistant emulsion explosive by software SPSS[J]. Explosive Materials, 2020, 49(6): 42-47 (in Chinese). | |
[39] | 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153. |
LI P, ZHAO Y J, WANG L B. Research on factors affecting erosion wear performance of 304 stainless steel based on interactive orthogonal experiment[J]. Materials Reports, 2020, 34(8): 8149-8153 (in Chinese). | |
[40] | 王辛岩, 李天娇. 基于PCA和有序logistics回归的驾驶工作负荷影响因素分析[J]. 数学的实践与认识, 2020, 50(22): 78-84. |
WANG X Y, LI T J. Analysis of Factors Affecting Driving Activity Workload based on PCA and Ordered Logistic Regression[J]. Mathematics in Practice and Theory, 2020, 50(22): 78-84 (in Chinese). | |
[41] | CHAPMAN J R, NOYCE D A. Influence of roadway geometric elements on driver behavior when overtaking bicycles on rural roads[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(1): 28-38. |
[42] | 徐进, 罗庆, 毛嘉川, 等. 考虑弯道几何要素和交通量影响的汽车行驶速度预测模型[J]. 中国公路学报, 2012, 25(5): 47-57. |
XU J, LUO Q, MAO J C, et al. Speed prediction model of car/truck considering the effect of curve geometric features and traffic volume[J]. China Journal of Highway and Transport, 2012, 25(5): 47-57 (in Chinese). | |
[43] | 曹新涛, 泮俊, 胡江碧. 基于驾驶工作负荷的心生理指标研究[J]. 公路交通科技: 应用技术版, 2011, 7(6): 264-267. |
CAO X T, PAN J, HU J B. Study on psychophysiological indexes based on driving workload[J]. Journal of Guizhou University of Finance and Economics, 2011, 7(6): 264-267 (in Chinese). | |
[44] | KIM H, GABBARD J L. Assessing distraction potential of augmented reality head-up displays for vehicle drivers[J]. Human Factors, 2022, 64(5): 852-865. |
[45] | MA X D, HONG Z C, HUANG J H, et al. The impact of AR-HUD intelligent driving on the allocation of cognitive resources under the breakthrough of 5G technology[J]. Journal of Physics: Conference Series, 2021, 1982(1): 012024. |
[46] | 刘卓凡, 赵霞, 吴付威. 城市道路场景下驾驶注意力需求的影响因素研究[J]. 交通运输系统工程与信息, 2021, 21(1): 132-136, 148. |
LIU Z F, ZHAO X, WU F W. Influencing factors of driving attention demand in urban road scenario[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 132-136, 148 (in Chinese). | |
[47] | 郭应时. 交通环境及驾驶经验对驾驶员眼动和工作负荷影响的研究[D]. 西安: 长安大学, 2009. |
GUO Y S. Study on effects of traffic environment and driving experience on driver’s eye movement and workload[D]. Xi’an: Changan University, 2009 (in Chinese). |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||