Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 845-855.DOI: 10.11996/JG.j.2095-302X.2024040845
• BIM/CIM • Previous Articles Next Articles
ZOU Yakun1,2(), CHEN Xianchuan1,2, TAN Yi1,2(
), LIN Yongfeng3, ZHANG Yafei3
Received:
2023-11-26
Accepted:
2024-03-24
Online:
2024-08-31
Published:
2024-09-03
Contact:
TAN Yi
About author:
First author contact:ZOU Yakun (2000-), master student. His main research interests cover point cloud data process and BIM. E-mail:2210474005@email.szu.edu.cn
Supported by:
CLC Number:
ZOU Yakun, CHEN Xianchuan, TAN Yi, LIN Yongfeng, ZHANG Yafei. Automated detection of truss geometric quality based on BIM and 3D laser scanning[J]. Journal of Graphics, 2024, 45(4): 845-855.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040845
等级 | 英文名 | 代号 | 包含的最小模型单元 |
---|---|---|---|
1.0级模型精细度 | Level of Model Definition 1.0 | LOD1.0 | 项目级模型单元 |
2.0级模型精细度 | Level of Model Definition 2.0 | LOD2.0 | 功能级模型单元 |
3.0级模型精细度 | Level of Model Definition 3.0 | LOD3.0 | 构件级模型单元 |
4.0级模型精细度 | Level of Model Definition 4.0 | LOD4.0 | 零件级模型单元 |
Table 1 Basic Division of Levels of Model Definition
等级 | 英文名 | 代号 | 包含的最小模型单元 |
---|---|---|---|
1.0级模型精细度 | Level of Model Definition 1.0 | LOD1.0 | 项目级模型单元 |
2.0级模型精细度 | Level of Model Definition 2.0 | LOD2.0 | 功能级模型单元 |
3.0级模型精细度 | Level of Model Definition 3.0 | LOD3.0 | 构件级模型单元 |
4.0级模型精细度 | Level of Model Definition 4.0 | LOD4.0 | 零件级模型单元 |
Fig. 3 The background point segmentation process ((a) Reference point clouds; (b) Original point clouds; (c) Point clouds registration; (d) Background points segmentation)
Fig. 5 The results of key point detection under different parameters ((a) The results of key point detection with overly large parameters; (b) The results of key point detection with overly small parameters; (c) The results of key point detection using the method proposed in this paper)
性能参数 | 数值 |
---|---|
视场 | 360°×282° |
扫描时间 | 最快94 s |
扫描速度 | 最大500 kHz |
测程 | 0.6~80 m |
测距精度 | 2 mm |
角度精度 | 21'' |
Table 2 The performance parameters of Trimble X7
性能参数 | 数值 |
---|---|
视场 | 360°×282° |
扫描时间 | 最快94 s |
扫描速度 | 最大500 kHz |
测程 | 0.6~80 m |
测距精度 | 2 mm |
角度精度 | 21'' |
性能参数 | 数值 |
---|---|
测角精度 | 2'' |
无棱镜测程 | 800 m |
测距精度 | 3 mm+2 ppm |
测量时间 | 约1.5 s |
Table 3 The performance parameters of ZTS-420L8
性能参数 | 数值 |
---|---|
测角精度 | 2'' |
无棱镜测程 | 800 m |
测距精度 | 3 mm+2 ppm |
测量时间 | 约1.5 s |
GUID | 中心坐标/m | PCD_ID | 中心坐标/m |
---|---|---|---|
233042 | (3.986, 7.989, 11.577) | 1 | (9.988, 38.001, 8.023) |
233218 | (3.986, 11.992, 11.577) | 2 | (53.997, 17.992, 8.025) |
233219 | (-0.014, 11.992, 11.577) | 3 | (35.998, -0.019, 11.535) |
233304 | (3.986, 15.993, 11.577) | 4 | (61.998, 42.014, 7.988) |
233305 | (-0.014, 15.993, 11.577) | 5 | (56.004, 48.002, 11.561) |
··· | ··· | ··· | ··· |
235945 | (62.000, 29.999, 8.026) | 418 | (39.990, 56.013, 11.545) |
235949 | (64.001, 36.002, 11.577) | 419 | (9.993, 17.992, 8.029) |
235955 | (62.000, 34.001, 8.026) | 420 | (17.988, 9.996, 8.022) |
235965 | (62.000, 38.003, 8.026) | 421 | (45.999, 45.998, 8.026) |
235975 | (62.000, 42.004, 8.026) | 422 | (53.997, 37.999, 8.032) |
Table 4 The design dataset and the computation dataset before matching
GUID | 中心坐标/m | PCD_ID | 中心坐标/m |
---|---|---|---|
233042 | (3.986, 7.989, 11.577) | 1 | (9.988, 38.001, 8.023) |
233218 | (3.986, 11.992, 11.577) | 2 | (53.997, 17.992, 8.025) |
233219 | (-0.014, 11.992, 11.577) | 3 | (35.998, -0.019, 11.535) |
233304 | (3.986, 15.993, 11.577) | 4 | (61.998, 42.014, 7.988) |
233305 | (-0.014, 15.993, 11.577) | 5 | (56.004, 48.002, 11.561) |
··· | ··· | ··· | ··· |
235945 | (62.000, 29.999, 8.026) | 418 | (39.990, 56.013, 11.545) |
235949 | (64.001, 36.002, 11.577) | 419 | (9.993, 17.992, 8.029) |
235955 | (62.000, 34.001, 8.026) | 420 | (17.988, 9.996, 8.022) |
235965 | (62.000, 38.003, 8.026) | 421 | (45.999, 45.998, 8.026) |
235975 | (62.000, 42.004, 8.026) | 422 | (53.997, 37.999, 8.032) |
GUID | 中心坐标/m | PCD_ID | 中心坐标/m |
---|---|---|---|
233042 | (3.986, 7.989, 11.577) | 39 | (4.019, 8.022, 11.533) |
233218 | (3.986, 11.992, 11.577) | 404 | (3.989, 11.995, 11.547) |
233219 | (-0.014, 11.992, 11.577) | 403 | (-0.011, 12.003, 11.534) |
233304 | (3.986, 15.993, 11.577) | 259 | (3.987, 16.003, 11.552) |
233305 | (-0.014, 15.993, 11.577) | 24 | (-0.002, 15.992, 11.532) |
··· | ··· | ··· | ··· |
235945 | (62.000, 29.999, 8.026) | 107 | (61.993, 29.996, 7.983) |
235949 | (64.001, 36.002, 11.577) | 413 | (64.003, 36.002, 11.538) |
235955 | (62.000, 34.001, 8.026) | 181 | (61.997, 33.999, 7.980) |
235965 | (62.000, 38.003, 8.026) | 188 | (61.994, 38.000, 7.989) |
235975 | (62.000, 42.004, 8.026) | 4 | (61.998, 42.014, 7.988) |
Table 5 The design dataset and the computation dataset after alignment
GUID | 中心坐标/m | PCD_ID | 中心坐标/m |
---|---|---|---|
233042 | (3.986, 7.989, 11.577) | 39 | (4.019, 8.022, 11.533) |
233218 | (3.986, 11.992, 11.577) | 404 | (3.989, 11.995, 11.547) |
233219 | (-0.014, 11.992, 11.577) | 403 | (-0.011, 12.003, 11.534) |
233304 | (3.986, 15.993, 11.577) | 259 | (3.987, 16.003, 11.552) |
233305 | (-0.014, 15.993, 11.577) | 24 | (-0.002, 15.992, 11.532) |
··· | ··· | ··· | ··· |
235945 | (62.000, 29.999, 8.026) | 107 | (61.993, 29.996, 7.983) |
235949 | (64.001, 36.002, 11.577) | 413 | (64.003, 36.002, 11.538) |
235955 | (62.000, 34.001, 8.026) | 181 | (61.997, 33.999, 7.980) |
235965 | (62.000, 38.003, 8.026) | 188 | (61.994, 38.000, 7.989) |
235975 | (62.000, 42.004, 8.026) | 4 | (61.998, 42.014, 7.988) |
PCDID | 三维激光扫描仪 | 全站仪 | 偏差/mm | ||||
---|---|---|---|---|---|---|---|
x | y | z | x | y | z | ||
23 | 2.044 53 | 18.003 90 | 7.974 56 | 2.045 | 18.005 | 7.975 | 1.27 |
42 | 5.976 54 | 17.997 60 | 7.994 92 | 5.977 | 17.998 | 7.996 | 1.24 |
49 | 1.994 00 | 37.992 60 | 7.972 50 | 1.995 | 37.993 | 7.972 | 1.19 |
70 | 5.997 44 | 9.996 55 | 7.995 16 | 5.998 | 9.997 | 7.996 | 1.11 |
71 | 5.985 68 | 13.999 70 | 8.000 11 | 5.985 | 13.999 | 8.000 | 0.98 |
84 | 1.999 16 | 21.987 70 | 7.991 13 | 2.000 | 21.989 | 7.991 | 1.55 |
90 | 61.995 00 | 21.993 10 | 7.984 19 | 61.996 | 21.993 | 7.985 | 1.29 |
98 | 1.993 92 | 25.978 40 | 7.997 08 | 1.994 | 25.979 | 7.997 | 0.61 |
103 | 17.987 60 | 29.997 30 | 7.995 96 | 17.987 | 29.998 | 7.997 | 1.39 |
109 | 1.995 78 | 29.997 30 | 7.975 51 | 1.996 | 29.997 | 7.976 | 0.62 |
116 | 21.991 70 | 33.993 40 | 7.999 09 | 21.992 | 33.993 | 8.000 | 1.04 |
117 | 57.984 90 | 33.996 00 | 7.989 51 | 57.986 | 33.997 | 7.990 | 1.57 |
120 | 13.986 50 | 37.999 20 | 7.998 21 | 13.987 | 38.000 | 7.999 | 1.23 |
163 | 49.997 20 | 13.990 70 | 8.000 75 | 49.998 | 13.991 | 8.000 | 1.14 |
165 | 1.991 44 | 14.002 70 | 7.991 35 | 1.990 | 14.004 | 7.992 | 2.05 |
166 | 62.013 90 | 14.006 60 | 8.004 91 | 62.015 | 14.006 | 8.006 | 1.66 |
187 | 49.990 10 | 34.008 90 | 7.993 09 | 49.990 | 34.008 | 7.993 | 0.91 |
219 | 37.985 70 | 54.005 10 | 7.986 91 | 37.986 | 54.005 | 7.987 | 0.33 |
222 | 49.999 90 | 54.001 20 | 7.987 06 | 50.001 | 54.001 | 7.987 | 1.12 |
421 | 45.999 10 | 45.998 30 | 8.026 99 | 46.000 | 45.997 | 8.026 | 1.87 |
Table 6 Result of calculating node coordinates
PCDID | 三维激光扫描仪 | 全站仪 | 偏差/mm | ||||
---|---|---|---|---|---|---|---|
x | y | z | x | y | z | ||
23 | 2.044 53 | 18.003 90 | 7.974 56 | 2.045 | 18.005 | 7.975 | 1.27 |
42 | 5.976 54 | 17.997 60 | 7.994 92 | 5.977 | 17.998 | 7.996 | 1.24 |
49 | 1.994 00 | 37.992 60 | 7.972 50 | 1.995 | 37.993 | 7.972 | 1.19 |
70 | 5.997 44 | 9.996 55 | 7.995 16 | 5.998 | 9.997 | 7.996 | 1.11 |
71 | 5.985 68 | 13.999 70 | 8.000 11 | 5.985 | 13.999 | 8.000 | 0.98 |
84 | 1.999 16 | 21.987 70 | 7.991 13 | 2.000 | 21.989 | 7.991 | 1.55 |
90 | 61.995 00 | 21.993 10 | 7.984 19 | 61.996 | 21.993 | 7.985 | 1.29 |
98 | 1.993 92 | 25.978 40 | 7.997 08 | 1.994 | 25.979 | 7.997 | 0.61 |
103 | 17.987 60 | 29.997 30 | 7.995 96 | 17.987 | 29.998 | 7.997 | 1.39 |
109 | 1.995 78 | 29.997 30 | 7.975 51 | 1.996 | 29.997 | 7.976 | 0.62 |
116 | 21.991 70 | 33.993 40 | 7.999 09 | 21.992 | 33.993 | 8.000 | 1.04 |
117 | 57.984 90 | 33.996 00 | 7.989 51 | 57.986 | 33.997 | 7.990 | 1.57 |
120 | 13.986 50 | 37.999 20 | 7.998 21 | 13.987 | 38.000 | 7.999 | 1.23 |
163 | 49.997 20 | 13.990 70 | 8.000 75 | 49.998 | 13.991 | 8.000 | 1.14 |
165 | 1.991 44 | 14.002 70 | 7.991 35 | 1.990 | 14.004 | 7.992 | 2.05 |
166 | 62.013 90 | 14.006 60 | 8.004 91 | 62.015 | 14.006 | 8.006 | 1.66 |
187 | 49.990 10 | 34.008 90 | 7.993 09 | 49.990 | 34.008 | 7.993 | 0.91 |
219 | 37.985 70 | 54.005 10 | 7.986 91 | 37.986 | 54.005 | 7.987 | 0.33 |
222 | 49.999 90 | 54.001 20 | 7.987 06 | 50.001 | 54.001 | 7.987 | 1.12 |
421 | 45.999 10 | 45.998 30 | 8.026 99 | 46.000 | 45.997 | 8.026 | 1.87 |
方法 | 扫描站 点规划 | 数据 采集 | 数据 处理 | 总时间 |
---|---|---|---|---|
本文 | 5 | 30 | 16 | 51 |
全站仪 | 10 | 10 | 70 | 90 |
Table 7 Time comparison between the method proposed in this paper and the traditional method/min
方法 | 扫描站 点规划 | 数据 采集 | 数据 处理 | 总时间 |
---|---|---|---|---|
本文 | 5 | 30 | 16 | 51 |
全站仪 | 10 | 10 | 70 | 90 |
Fig. 12 Total offset and offset components of the node center coordinates relative to the design values ((a) Total offset and X-axis component; (b) Total offset and Y-axis component; (c) Total offset and Z-axis component)
[1] | GUO M, SUN M X, PAN D, et al. High-precision detection method for large and complex steel structures based on global registration algorithm and automatic point cloud generation[J]. Measurement, 2021, 172: 108765. |
[2] | 马晓晓, 张胜, 程国忠, 等. 基于点云数据的预制叠合板尺寸质量智能检测方法[J]. 土木与环境工程学报: 中英文, 2024, 46(1): 102-109. |
MA X X, ZHANG S, CHENG G Z, et al. Automated dimensional quality assessment of precast laminated panels based on 3D laser scanning[J]. Journal of Civil and Environmental Engineering, 2024, 46(1): 102-109 (in Chinese). | |
[3] | 刘界鹏, 崔娜, 周绪红, 等. 基于三维激光扫描的房屋尺寸质量智能化检测方法[J]. 建筑科学与工程学报, 2022, 39(4): 71-80, 3-4. |
LIU J P, CUI N, ZHOU X H, et al. Intelligent inspection method for dimensional quality of houses based on 3D laser scanning[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 71-80, 3-4 (in Chinese). | |
[4] | LI J L, SAYDAM S, XU Y Y, et al. Class-aware tiny object recognition over large-scale 3D point clouds[J]. Neurocomputing, 2023, 529(C): 166-181. |
[5] | LIN C Y, LIU H, WU D Y, et al. Background point filtering of low-channel infrastructure-based LiDAR data using a slice-based projection filtering algorithm[J]. Sensors, 2020, 20(11): 3054. |
[6] | YANG S, ZHENG L H, GAO W L, et al. An efficient processing approach for colored point cloud-based high-throughput seedling phenotyping[J]. Remote Sensing, 2020, 12(10): 1540. |
[7] | MA Z H, SUN D W, XU H X, et al. Optimization of 3D point clouds of oilseed rape plants based on time-of-flight cameras[J]. Sensors, 2021, 21(2): 664. |
[8] | HU Z T, CHEN C, YANG B S, et al. Geometric feature enhanced line segment extraction from large-scale point clouds with hierarchical topological optimization[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102858. |
[9] | 王浩, 郑德华, 刘存泰, 等. 基于SHOT特征描述子的自动提取球形标靶方法研究[J]. 图学学报, 2022, 43(5): 849-857. |
WANG H, ZHENG D H, LIU C T, et al. Research on automatic extraction of spherical targets based on SHOT feature descriptor[J]. Journal of Graphics, 2022, 43(5): 849-857 (in Chinese). | |
[10] | SHAO Y Y, TONG G F, PENG H. Mining local geometric structure for large-scale 3D point clouds semantic segmentation[J]. Neurocomputing, 2022, 500(C): 191-202. |
[11] | XIANG X Y, WANG L, ZONG W P, et al. Extraction of local structure information of point clouds through space-filling curve for semantic segmentation[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 103027. |
[12] | HE G Z, YANG J, BEHNKE S. Research on geometric features and point cloud properties for tree skeleton extraction[J]. Personal and Ubiquitous Computing, 2018, 22(5): 903-910. |
[13] | ZHANG J P, WANG J L, DONG P L, et al. Tree stem extraction from TLS point-cloud data of natural forests based on geometric features and DBSCAN[J]. Geocarto International, 2022, 37(25): 10392-10406. |
[14] | TAN Y, CHEN L M, WANG Q, et al. Geometric quality assessment of prefabricated steel box girder components using 3D laser scanning and building information model[J]. Remote Sensing, 2023, 15(3): 556. |
[15] | SELVARAJ S, MADHAVAN M. Geometric imperfection measurements and validations on cold-formed steel channels using 3D noncontact laser scanner[J]. Journal of Structural Engineering, 2018, 144(3): 04018010. |
[16] | XIA Y, BLUM H. Geometric imperfection measurements of cold-formed steel members using a portable non-contact 3D laser scanner[EB/OL]. [2024-01-20]. https://www.researchgate.net/publication/346533087_Geometric_imperfection_measurements_of_cold-formed_steel_members_using_a_portable_non-contact_3D_laser_scanner. |
[17] | LIU J D, ZHANG Q L, WU J, et al. Dimensional accuracy and structural performance assessment of spatial structure components using 3D laser scanning[J]. Automation in Construction, 2018, 96: 324-336. |
[18] | CHA G, PARK S, OH T. A terrestrial LiDAR-based detection of shape deformation for maintenance of bridge structures[J]. Journal of Construction Engineering and Management, 2019, 145(12): 04019075. |
[19] | XU D D, WANG Y Q, LIU X L, et al. A novel method and modelling technique for determining the initial geometric imperfection of steel members using 3D scanning[J]. Structures, 2023, 49: 855-874. |
[20] | National Institute of Building Sciences. National BIM standard-United States version 3[EB/OL]. (2007-12-15) [2024-01-20]. https://classes.engr.oregonstate.edu/cce/winter2018/cce203/NBIMS-US_V3/NBIMS-US_V3_Annex_B_NBIMS-V1P1_December_2007.pdf. |
[21] | 中华人民共和国住房和城乡建设部.建筑信息模型设计交付标准: GB/T 51301—2018[S]. 北京: 中国建筑工业出版社, 2018: 8-9. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for design delivery of building information modeling: GB/T 51301—2018[S]. Beijing: China Architecture & Building Press, 2018: 8-9 (in Chinese). | |
[22] | BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. |
[23] |
范强, 刘鹏, 杨俊, 等. 基于3D-Harris 与 FPFH 改进的 3D-NDT 配准算法[J]. 图学学报, 2020, 41(4): 567-575.
DOI |
FAN Q, LIU P, YANG J, et al. Improved 3D-NDT point cloud registration algorithm based on 3D-Harris and FPFH[J]. Journal of Graphics, 2020, 41(4): 567-575 (in Chinese).
DOI |
|
[24] | ASSEM I, DUPONT G. Friezes and a construction of the Euclidean cluster variables[J]. Journal of Pure and Applied Algebra, 2011, 215(10): 2322-2340. |
[25] | FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[M]// Readings in Computer Vision. Amsterdam: Elsevier, 1987: 726-740. |
[26] | 中华人民共和国住房和城乡建设部.钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2017: 145-146. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China.Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017: 145-146 (in Chinese). | |
[27] | HAN L, BANCROFT J. Nearest approaches to multiple lines in n-dimensional space[EB/OL]. [2024-01-20]. https://www.researchgate.net/publication/265001563_Nearest_approaches_to_multiple_lines_in_n-dimensional_space. |
[28] |
王佳, 吴磊, 周小平, 等. 基于构件形状分布和配准位置的BIM模型对比方法[J]. 图学学报, 2020, 41(3): 480-489.
DOI |
WANG J, WU L, ZHOU X P, et al. Comparison method of BIM models based on component shape distribution and registration position[J]. Journal of Graphics, 2020, 41(3): 480-489 (in Chinese).
DOI |
[1] | HE Qing, JING Chuanyu, SUN Huakun, YAO Li, XU Jingmang, WANG Ping. An intelligent railway operation and maintenance management approach based on BIM and semantic web [J]. Journal of Graphics, 2024, 45(3): 601-612. |
[2] | PAN Ze-yu, SHI Jian-yong, JIANG Liu. Semantic web-based BIM model integrity checking approach for power grid projects [J]. Journal of Graphics, 2023, 44(5): 1021-1033. |
[3] | GAN Zi-chen, FAN Jing-jing, XUE Zhi-ting, LIN Ding-liang, XU Zhen. Research on design responsibility and right traceability system integrating BIM and blockchain [J]. Journal of Graphics, 2023, 44(4): 810-817. |
[4] | WANG Heng-wei, HU Zhen-zhong, ZHAO Yan-lai, ZHONG Jian, CHEN Yi. Research on semi-automatic geo-referencing approach in city information modeling [J]. Journal of Graphics, 2023, 44(3): 616-624. |
[5] | HE Qing, JING Chuan-yu, GAO Tian-ci, WANG Ping. Research on BIM model of railway track structure based on IFC standard extension [J]. Journal of Graphics, 2023, 44(2): 357-367. |
[6] | ZHANG Ji-song, YU Ze-han, LI Hai-jiang. Compliance checking approach for BIM structural model under semantic web [J]. Journal of Graphics, 2023, 44(2): 368-379. |
[7] | NAZHAER Mulatibieke, SHI Jian-yong, JIANG Liu, PAN Ze-yu, YANG Hai-tao , WANG Jia-liang. Research of BIM and ontology-based irregular building type checking [J]. Journal of Graphics, 2022, 43(5): 918-926. |
[8] | XIONG Chen, CHEN Li-bin, LI Lin-ze, XU Zhen, ZHAO Yang-ping. Crack visualization management method based on computer vision and BIM [J]. Journal of Graphics, 2022, 43(4): 721-728. |
[9] | JIANG Liu, SHI Jian-yong, FU Gong-yi, PAN Ze-yu, WANG Chao-yu. Identification of the plane irregularity of structures based on BIM and deep learning [J]. Journal of Graphics, 2022, 43(3): 522-529. |
[10] | DUAN Rui, DENG Hui, DENG Yi-chuan . Information communications technology assisted tower crane safety management-review and prospect [J]. Journal of Graphics, 2022, 43(1): 11-20. |
[11] | XUE Jing-guo, HOU Xue-liang . Location of cast-in-place concrete structural members based on BIM + CV [J]. Journal of Graphics, 2022, 43(1): 156-162. |
[12] | ZHANG Wen-yuan, TAN Guo-xin . Research on semantic 3D building modeling with multiple levels of detail [J]. Journal of Graphics, 2022, 43(1): 163-171. |
[13] | WANG Yong-hai , YAO Ling , CHEN Shun-qing , BAO Shi-tai, . Research on levels and classification of city information model [J]. Journal of Graphics, 2021, 42(6): 995-1001. |
[14] | ZHAO Xue-feng, HOU Xiao, LIU Zhan-sheng, LI Meng-xuan . Research on closed-loop management system of BIM course teaching in universities [J]. Journal of Graphics, 2021, 42(6): 1011-1017. |
[15] | LIU Shi-long, MA Zhi-liang. BIM-based algorithm for automatic generation of semantic as-designed point cloud of reinforcement skeleton [J]. Journal of Graphics, 2021, 42(5): 816-822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||