Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 393-401.DOI: 10.11996/JG.j.2095-302X.2025020393
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
FANG Chenghao(), WANG Kangkan(
)
Received:
2024-07-05
Accepted:
2024-11-27
Online:
2025-04-30
Published:
2025-04-24
Contact:
WANG Kangkan
About author:
First author contact:FANG Chenghao (1999-), master student. His main research interests cover computer graphics, computer vision and 3D reconstruction. E-mail:121106022661@njust.edu.cn
Supported by:
CLC Number:
FANG Chenghao, WANG Kangkan. 3D human pose and shape estimation from single-view point clouds with semi-supervised learning[J]. Journal of Graphics, 2025, 46(2): 393-401.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020393
方法 | 无增强 | 随机 平移 | 平均 降采样 | 随机 噪声 | 不均匀 密度 | 随机 去块 | 多次 随机去块 | 平均降采样+ 噪声 | 多次随机去块+ 噪声 |
---|---|---|---|---|---|---|---|---|---|
CAPE | 21.32 | 22.03 | 24.75 | 28.34 | 36.33 | 43.01 | 51.07 | 30.04 | 60.82 |
SURREAL | 23.07 | 23.68 | 26.16 | 29.04 | 37.84 | 42.63 | 56.47 | 30.94 | 57.91 |
Kungfu | 22.20 | 23.11 | 27.19 | 28.51 | 30.84 | 37.57 | 47.33 | 35.20 | 54.96 |
Table 1 Human model estimation errors for different point cloud augmentation methods/mm
方法 | 无增强 | 随机 平移 | 平均 降采样 | 随机 噪声 | 不均匀 密度 | 随机 去块 | 多次 随机去块 | 平均降采样+ 噪声 | 多次随机去块+ 噪声 |
---|---|---|---|---|---|---|---|---|---|
CAPE | 21.32 | 22.03 | 24.75 | 28.34 | 36.33 | 43.01 | 51.07 | 30.04 | 60.82 |
SURREAL | 23.07 | 23.68 | 26.16 | 29.04 | 37.84 | 42.63 | 56.47 | 30.94 | 57.91 |
Kungfu | 22.20 | 23.11 | 27.19 | 28.51 | 30.84 | 37.57 | 47.33 | 35.20 | 54.96 |
Fig. 3 Heat map for the reconstruction error of different augmented Samples ((a) Random translation; (b) Average down-sampling; (c) Random noise; (d) Uneven density; (e) Random drop; (f) Multiple random drops; (g) Average down-sampling with random noise; (h) Multiple random drops with random noise)
帧序号 | 本文方法 | MAVE | 倒角距离 |
---|---|---|---|
0 | 0.43 | 0.00 | 0.03 |
10 | 1.75 | 24.03 | 0.64 |
20 | 3.35 | 47.55 | 2.01 |
30 | 5.18 | 62.34 | 15.92 |
40 | 6.97 | 105.70 | 49.42 |
Table 2 The errors calculated by different evaluation methods for pseudo-label
帧序号 | 本文方法 | MAVE | 倒角距离 |
---|---|---|---|
0 | 0.43 | 0.00 | 0.03 |
10 | 1.75 | 24.03 | 0.64 |
20 | 3.35 | 47.55 | 2.01 |
30 | 5.18 | 62.34 | 15.92 |
40 | 6.97 | 105.70 | 49.42 |
不同阈值 | 合成数据集/mm | 伪标签 利用率/% | ||
---|---|---|---|---|
CAPE | SURREAL | DFAUST | ||
固定3.5 | 27.46 | 37.03 | 41.10 | 56 |
固定2.0 | 23.92 | 27.79 | 29.93 | 11 |
固定1.5 | 22.74 | 28.37 | 31.90 | 5 |
动态阈值 | 21.83 | 24.79 | 23.58 | 32 |
Table 3 Reconstruction error and pseudo-label utilisation on different datasets for models trained with different thresholds
不同阈值 | 合成数据集/mm | 伪标签 利用率/% | ||
---|---|---|---|---|
CAPE | SURREAL | DFAUST | ||
固定3.5 | 27.46 | 37.03 | 41.10 | 56 |
固定2.0 | 23.92 | 27.79 | 29.93 | 11 |
固定1.5 | 22.74 | 28.37 | 31.90 | 5 |
动态阈值 | 21.83 | 24.79 | 23.58 | 32 |
方法 | CAPE | SURREAL | DFAUST |
---|---|---|---|
Point-based HMR[ | 44.18 | 49.98 | 47.01 |
文献[13] | 25.51 | 29.33 | 28.35 |
IPNet[ | 30.56 | 34.52 | 37.76 |
本文方法 | 22.83 | 24.79 | 23.57 |
Table 4 Reconstruction errors of different methods on various synthetic datasets/mm
方法 | CAPE | SURREAL | DFAUST |
---|---|---|---|
Point-based HMR[ | 44.18 | 49.98 | 47.01 |
文献[13] | 25.51 | 29.33 | 28.35 |
IPNet[ | 30.56 | 34.52 | 37.76 |
本文方法 | 22.83 | 24.79 | 23.57 |
Fig. 5 Heat map of reconstruction errors of different methods on synthetic datasets ((a) Input point cloud; (b) Point-based HMR[3]; (c) References [13]; (d) IPNet[11]; (e) Ours)
方法 | Crouching | Kungfu | Girl |
---|---|---|---|
IPNet[ | 47.55 | 64.18 | 52.79 |
PTF[ | 40.82 | 53.66 | 44.07 |
文献[13] | 28.33 | 30.93 | 31.49 |
本文方法 | 26.30 | 28.62 | 28.14 |
Table 5 Reconstruction errors of different methods on various real datasets/mm
方法 | Crouching | Kungfu | Girl |
---|---|---|---|
IPNet[ | 47.55 | 64.18 | 52.79 |
PTF[ | 40.82 | 53.66 | 44.07 |
文献[13] | 28.33 | 30.93 | 31.49 |
本文方法 | 26.30 | 28.62 | 28.14 |
Fig. 6 Reconstruction and alignment results of different methods on the real dataset ((a) Input point cloud; (b) IPNet[11]; (c) PTF[12]; (d) References [13]; (e) Ours)
[1] | LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. Seminal Graphics Papers: Pushing the Boundaries, 2023, 2: 88. |
[2] | BOGO F, KANAZAWA A, LASSNER C, et al. Keep it SMPL: automatic estimation of 3D human pose and shape from a single image[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 561-578. |
[3] | KANAZAWA A, BLACK M J, JACOBS D W, et al. End-to-end recovery of human shape and pose[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7122-7131. |
[4] | KOLOTOUROS N, PAVLAKOS G, BLACK M J, et al. Learning to reconstruct 3D human pose and shape via model-fitting in the loop[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 2252-2261. |
[5] | ZHANG H W, TIAN Y T, ZHOU X C, et al. PyMAF: 3D human pose and shape regression with pyramidal mesh alignment feedback loop[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 11426-11436. |
[6] | RONG Y, SHIRATORI T, JOO H. FrankMocap: a monocular 3D whole-body pose estimation system via regression and integration[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 1749-1759. |
[7] | JIANG H Y, CAI J F, ZHENG J M. Skeleton-aware 3D human shape reconstruction from point clouds[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 5430-5440. |
[8] | JANG H, KIM M, BAE J, et al. Dynamic mesh recovery from partial point cloud sequence[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 15028-15038. |
[9] | GUO K W, XU F, YU T, et al. Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera[J]. ACM Transactions on Graphics, 2017, 36(3): 32. |
[10] | SAITO S, HUANG Z, NATSUME R, et al. PIFu: pixel-aligned implicit function for high-resolution clothed human digitization[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 2304-2314. |
[11] | BHATNAGAR B L, SMINCHISESCU C, THEOBALT C, et al. Combining implicit function learning and parametric models for 3D human reconstruction[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 311-329. |
[12] | WANG S F, GEIGER A, TANG S Y. Locally aware piecewise transformation fields for 3D human mesh registration[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7635-7644. |
[13] | WANG K K, ZHENG H Y, ZHANG G F, et al. Parametric model estimation for 3D clothed humans from point clouds[C]// 2021 IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2021: 156-165. |
[14] | LIU G Z, RONG Y, SHENG L. VoteHMR: occlusion-aware voting network for robust 3D human mesh recovery from partial point clouds[C]// The 29th ACM International Conference on Multimedia. New York: ACM, 2021: 955-964. |
[15] |
张小蒙, 方贤勇, 汪粼波, 等. 基于改进分段铰链变换的人体重建技术[J]. 图学学报, 2020, 41(1): 108-115.
DOI |
ZHANG X M, FANG X Y, WANG L B, et al. Human body reconstruction based on improved piecewise hinge transformation[J]. Journal of Graphics, 2020, 41(1): 108-115 (in Chinese). | |
[16] | 韩凯, 庞宗强, 王龙, 等. 基于深度扫描仪的高辨识度三维人体模型重建方法[J]. 图学学报, 2015, 36(4): 503-510. |
HAN K, PANG Z Q, WANG L, et al. High identification 3D human body model reconstruction method based on the depth scanner[J]. Journal of Graphics, 2015, 36(4): 503-510 (in Chinese). | |
[17] | CAI Z A, PAN L, WEI C, et al. PointHPS:cascaded 3D human pose and shape estimation from point clouds[EB/OL]. (2023-08-28) [2024-10-25]. http://arxiv.org/pdf/2308.14492.pdf. |
[18] | SOHN K, BERTHELOT D, LI C L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 51. |
[19] | LEE D H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks[EB/OL]. [2024-05-05]. https://www.researchgate.net/publication/280581078_Pseudo-Label_The_Simple_and_Efficient_Semi-Supervised_Learning_Method_for_Deep_Neural_Networks. |
[20] | BACHMAN P, ALSHARIF O, PRECUP D. Learning with pseudo-ensembles[C]// The 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3365-3373. |
[21] | QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[22] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5105-5114. |
[23] | LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm[J]. Computer Graphics, 1987, 21(4): 347-353. |
[24] | CHIBANE J, ALLDIECK T, PONS-MOLL G. Implicit functions in feature space for 3D shape reconstruction and completion[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 6968-6979. |
[25] | KINGMA D P, REZENDE D J, MOHAMED S, et al. Semi-supervised learning with deep generative models[C]// The 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3581-3589. |
[26] | ZHU X J, GHAHRAMANI Z B. Learning from labeled and unlabeled data with label propagation[R]. Technical Report CMU-CALD-02-107, 2002. |
[27] | GRANDVALET Y, BENGIO Y. Semi-supervised learning by entropy minimization[C]// The 17th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2004: 529-536. |
[28] | BERTHELOT D, CARLINI N, GOODFELLOW I, et al. MixMatch: a holistic approach to semi-supervised learning[C]// The 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 454. |
[29] | BERTHELOT D, CARLINI N, CUBUK E D, et al. ReMixMatch: semi-supervised learning with distribution alignment and augmentation anchoring[EB/OL]. (2019-11-21) [2024-10-25]. http://arxiv.org/pdf/1911.09785.pdf. |
[30] | HUANG C, CAO Z J, WANG Y B, et al. MetaSets: meta-learning on point sets for generalizable representations[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 8859-8868. |
[31] | MA Q L, YANG J L, RANJAN A, et al. Learning to dress 3D people in generative clothing[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 6468-6477. |
[32] | VAROL G, ROMERO J, MARTIN X, et al. Learning from synthetic humans[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 4627-4635. |
[33] | BOGO F, ROMERO J, PONS-MOLL G, et al. Dynamic FAUST: Registering human bodies in motion[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5573-5582. |
[34] | WANG K K, ZHANG G F, ZHENG H Y, et al. Learning dense correspondences for non-rigid point clouds with two-stage regression[J]. IEEE Transactions on Image Processing, 2021, 30: 8468-8482. |
[35] | GUO K W, XU F, WANG Y G, et al. Robust non-rigid motion tracking and surface reconstruction using l0 regularization[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 3083-3091. |
[36] | LI J F, BIAN S Y, XU C, et al. HybrIK-X: hybrid analytical-neural inverse kinematics for whole-body mesh recovery[EB/OL]. (2023-04-12)[2024-10-25]. http://arxiv.org/pdf/2304.05690.pdf. |
[37] | LIN J, ZENG A L, WANG H Q, et al. One-stage 3D whole-body mesh recovery with component aware transformer[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 21159-21168. |
[1] | CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection [J]. Journal of Graphics, 2025, 46(1): 114-125. |
[2] | YANG Xu-bing1, GE Yan-qi1, ZHANG Fu-quan1, FAN Xi-jian1, YAO Hong-liang2 . Semi-Supervised Algorithm for Forest Fire Recognition Based on Matrix Pattern [J]. Journal of Graphics, 2019, 40(5): 835-842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||