Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 114-125.DOI: 10.11996/JG.j.2095-302X.2025010114
• Image Processing and Computer Vision • Previous Articles Next Articles
CHENG Xudong1,2(), SHI Caijuan1,2(
), GAO Weixiang1,2, WANG Sen1,2, DUAN Changyu1,2, YAN Xiaodong1,2
Received:
2024-07-01
Accepted:
2024-10-19
Online:
2025-02-28
Published:
2025-02-14
Contact:
SHI Caijuan
About author:
First author contact:CHENG Xudong (1999-), master student. His main research interests cover transfer learning and object detection. E-mail:chengxd99@163.com
Supported by:
CLC Number:
CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection[J]. Journal of Graphics, 2025, 46(1): 114-125.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010114
Fig. 8 CycleGAN image-to-image translation datasets ((a) Normal weather images to complex weather images; (b) Visual images to infrared images; (c) Synthesize images to real images)
模型 | 模型来源 | Person | Rider | Car | Truck | Bus | Train | Mcycle | Bicycle | mAP |
---|---|---|---|---|---|---|---|---|---|---|
EPM[ | ECCV'20 | 41.9 | 38.7 | 56.7 | 22.6 | 41.5 | 26.8 | 24.6 | 35.5 | 36.0 |
HTCN[ | CVPR'20 | 33.2 | 47.5 | 47.9 | 31.6 | 47.4 | 40.9 | 32.3 | 37.1 | 39.8 |
MeGA-CDA[ | CVPR'21 | 37.7 | 49.0 | 52.4 | 25.4 | 49.2 | 46.9 | 34.5 | 39.0 | 41.8 |
TIA[ | CVPR'22 | 34.8 | 46.3 | 49.7 | 31.1 | 52.1 | 48.6 | 37.7 | 38.1 | 42.3 |
SCAN[ | AAAI'22 | 41.7 | 43.9 | 57.3 | 28.7 | 48.6 | 48.7 | 31.0 | 37.3 | 42.1 |
SIGMA[ | CVPR'22 | 44.0 | 43.9 | 60.3 | 31.6 | 50.4 | 51.5 | 31.7 | 40.6 | 44.2 |
PT[ | ICML'22 | 40.2 | 48.8 | 59.7 | 30.7 | 51.8 | 30.6 | 35.4 | 44.5 | 42.7 |
LRA[ | TNNLS'23 | 45.6 | 47.1 | 59.7 | 32.1 | 52.4 | 44.6 | 34.8 | 39.9 | 44.5 |
DA-Detect[ | WACV'23 | 36.5 | 46.7 | 54.3 | 30.3 | 51.2 | 48.7 | 31.6 | 39.1 | 42.3 |
PT+CMT[ | CVPR'23 | 42.3 | 51.7 | 64.0 | 26.0 | 42.7 | 37.1 | 42.5 | 44.0 | 43.8 |
CIGAR[ | CVPR'23 | 45.3 | 45.3 | 61.6 | 32.1 | 50.0 | 51.0 | 31.9 | 40.4 | 44.7 |
MCNet[ | PR'24 | 48.0 | 50.4 | 62.4 | 26.5 | 46.3 | 34.3 | 37.1 | 43.1 | 43.5 |
DSCA[ | PR'24 | 40.5 | 44.3 | 60.2 | 29.3 | 50.1 | 49.5 | 30.6 | 37.6 | 42.7 |
CRADA[ | TMM'24 | 47.0 | 48.3 | 64.1 | 28.7 | 52.3 | 38.6 | 35.1 | 41.5 | 44.5 |
UGA[ | TOMM'24 | 39.5 | 51.1 | 57.5 | 35.0 | 51.4 | 44.2 | 37.3 | 43.6 | 45.0 |
Baseline[ | CVPR'21 | 33.0 | 46.7 | 48.6 | 34.1 | 56.5 | 46.8 | 30.4 | 37.3 | 41.7 |
CUT(本文) | - | 41.1 | 52.0 | 57.3 | 33.6 | 52.2 | 45.7 | 39.4 | 44.0 | 45.7 |
Table 1 Experimental results from Cityscapes to Foggy cityscapes/%
模型 | 模型来源 | Person | Rider | Car | Truck | Bus | Train | Mcycle | Bicycle | mAP |
---|---|---|---|---|---|---|---|---|---|---|
EPM[ | ECCV'20 | 41.9 | 38.7 | 56.7 | 22.6 | 41.5 | 26.8 | 24.6 | 35.5 | 36.0 |
HTCN[ | CVPR'20 | 33.2 | 47.5 | 47.9 | 31.6 | 47.4 | 40.9 | 32.3 | 37.1 | 39.8 |
MeGA-CDA[ | CVPR'21 | 37.7 | 49.0 | 52.4 | 25.4 | 49.2 | 46.9 | 34.5 | 39.0 | 41.8 |
TIA[ | CVPR'22 | 34.8 | 46.3 | 49.7 | 31.1 | 52.1 | 48.6 | 37.7 | 38.1 | 42.3 |
SCAN[ | AAAI'22 | 41.7 | 43.9 | 57.3 | 28.7 | 48.6 | 48.7 | 31.0 | 37.3 | 42.1 |
SIGMA[ | CVPR'22 | 44.0 | 43.9 | 60.3 | 31.6 | 50.4 | 51.5 | 31.7 | 40.6 | 44.2 |
PT[ | ICML'22 | 40.2 | 48.8 | 59.7 | 30.7 | 51.8 | 30.6 | 35.4 | 44.5 | 42.7 |
LRA[ | TNNLS'23 | 45.6 | 47.1 | 59.7 | 32.1 | 52.4 | 44.6 | 34.8 | 39.9 | 44.5 |
DA-Detect[ | WACV'23 | 36.5 | 46.7 | 54.3 | 30.3 | 51.2 | 48.7 | 31.6 | 39.1 | 42.3 |
PT+CMT[ | CVPR'23 | 42.3 | 51.7 | 64.0 | 26.0 | 42.7 | 37.1 | 42.5 | 44.0 | 43.8 |
CIGAR[ | CVPR'23 | 45.3 | 45.3 | 61.6 | 32.1 | 50.0 | 51.0 | 31.9 | 40.4 | 44.7 |
MCNet[ | PR'24 | 48.0 | 50.4 | 62.4 | 26.5 | 46.3 | 34.3 | 37.1 | 43.1 | 43.5 |
DSCA[ | PR'24 | 40.5 | 44.3 | 60.2 | 29.3 | 50.1 | 49.5 | 30.6 | 37.6 | 42.7 |
CRADA[ | TMM'24 | 47.0 | 48.3 | 64.1 | 28.7 | 52.3 | 38.6 | 35.1 | 41.5 | 44.5 |
UGA[ | TOMM'24 | 39.5 | 51.1 | 57.5 | 35.0 | 51.4 | 44.2 | 37.3 | 43.6 | 45.0 |
Baseline[ | CVPR'21 | 33.0 | 46.7 | 48.6 | 34.1 | 56.5 | 46.8 | 30.4 | 37.3 | 41.7 |
CUT(本文) | - | 41.1 | 52.0 | 57.3 | 33.6 | 52.2 | 45.7 | 39.4 | 44.0 | 45.7 |
模型 | 模型来源 | Car | Bicycle | Person | mAP |
---|---|---|---|---|---|
SWDA[ | CVPR'19 | 58.9 | 32.0 | 32.3 | 41.4 |
CR-DA-DET[ | CVPR'20 | 58.3 | 37.6 | 46.3 | 47.4 |
HTCN[ | CVPR'20 | 56.3 | 37.9 | 33.1 | 42.4 |
EPM[ | ECCV'20 | 53.8 | 39.0 | 41.0 | 44.6 |
VDD[ | ICCV'21 | 66.6 | 49.2 | 45.8 | 53.9 |
TIA[ | CVPR'22 | 67.8 | 44.8 | 48.8 | 53.8 |
UDAT[ | TVC'23 | 66.8 | 49.3 | 43.4 | 53.2 |
UGA[ | TOMM'24 | 68.5 | 48.0 | 51.6 | 56.0 |
Baseline[ | CVPR'21 | 65.3 | 43.5 | 49.5 | 52.8 |
CUT(本文) | - | 68.3 | 52.7 | 54.9 | 58.6 |
Table 2 Experimental results from RGB FLIR to Thermal FLIR/%
模型 | 模型来源 | Car | Bicycle | Person | mAP |
---|---|---|---|---|---|
SWDA[ | CVPR'19 | 58.9 | 32.0 | 32.3 | 41.4 |
CR-DA-DET[ | CVPR'20 | 58.3 | 37.6 | 46.3 | 47.4 |
HTCN[ | CVPR'20 | 56.3 | 37.9 | 33.1 | 42.4 |
EPM[ | ECCV'20 | 53.8 | 39.0 | 41.0 | 44.6 |
VDD[ | ICCV'21 | 66.6 | 49.2 | 45.8 | 53.9 |
TIA[ | CVPR'22 | 67.8 | 44.8 | 48.8 | 53.8 |
UDAT[ | TVC'23 | 66.8 | 49.3 | 43.4 | 53.2 |
UGA[ | TOMM'24 | 68.5 | 48.0 | 51.6 | 56.0 |
Baseline[ | CVPR'21 | 65.3 | 43.5 | 49.5 | 52.8 |
CUT(本文) | - | 68.3 | 52.7 | 54.9 | 58.6 |
模型 | 模型来源 | AP on Car/% |
---|---|---|
SCDA[ | CVPR'19 | 43.0 |
EPM[ | ECCV'20 | 43.2 |
HTCN[ | CVPR'20 | 42.5 |
SED[ | AAAI'21 | 42.5 |
MeGA-CDA[ | CVPR'21 | 44.8 |
SCAN[ | AAAI'22 | 45.8 |
SIGMA[ | CVPR'22 | 45.8 |
Baseline[ | CVPR'21 | 43.1 |
CUT(本文) | - | 46.8 |
Table 3 Experimental results from SIM10K to Cityscapes
模型 | 模型来源 | AP on Car/% |
---|---|---|
SCDA[ | CVPR'19 | 43.0 |
EPM[ | ECCV'20 | 43.2 |
HTCN[ | CVPR'20 | 42.5 |
SED[ | AAAI'21 | 42.5 |
MeGA-CDA[ | CVPR'21 | 44.8 |
SCAN[ | AAAI'22 | 45.8 |
SIGMA[ | CVPR'22 | 45.8 |
Baseline[ | CVPR'21 | 43.1 |
CUT(本文) | - | 46.8 |
模型 | ATG | PSS | MDA | mAP(C→F) | mAP(R→T) | AP on car(S→C) |
---|---|---|---|---|---|---|
Baseline | - | - | - | 41.7 | 52.8 | 43.1 |
#1 | √ | - | - | 43.1 | 54.3 | 44.7 |
#2 | - | √ | - | 43.8 | 53.3 | 44.5 |
#3 | - | - | √ | 44.2 | 55.0 | 44.6 |
#4 | √ | √ | - | 44.0 | 54.4 | 45.6 |
#5 | √ | - | √ | 45.4 | 57.0 | 46.1 |
#6 | - | √ | √ | 45.0 | 55.4 | 45.7 |
CUT(本文) | √ | √ | √ | 45.7 | 58.6 | 46.8 |
Table 4 Ablation study/%
模型 | ATG | PSS | MDA | mAP(C→F) | mAP(R→T) | AP on car(S→C) |
---|---|---|---|---|---|---|
Baseline | - | - | - | 41.7 | 52.8 | 43.1 |
#1 | √ | - | - | 43.1 | 54.3 | 44.7 |
#2 | - | √ | - | 43.8 | 53.3 | 44.5 |
#3 | - | - | √ | 44.2 | 55.0 | 44.6 |
#4 | √ | √ | - | 44.0 | 54.4 | 45.6 |
#5 | √ | - | √ | 45.4 | 57.0 | 46.1 |
#6 | - | √ | √ | 45.0 | 55.4 | 45.7 |
CUT(本文) | √ | √ | √ | 45.7 | 58.6 | 46.8 |
质量q | α | ||||
---|---|---|---|---|---|
0 | 0.2 | 0.5 | 0.8 | 1.0 | |
mAP/% | 41.7 | 43.8 | 43.2 | 42.9 | 41.2 |
Table 5 Analysis of hyperparameter α
质量q | α | ||||
---|---|---|---|---|---|
0 | 0.2 | 0.5 | 0.8 | 1.0 | |
mAP/% | 41.7 | 43.8 | 43.2 | 42.9 | 41.2 |
[1] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[2] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933. |
[3] | CHEN Y H, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3339-3348. |
[4] | CAI Q, PAN Y W, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 11449-11458. |
[5] | SONG G L, LIU Y, WANG X G. Revisiting the sibling head in object detector[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11560-11569. |
[6] | WANG X J, YANG X Y, ZHANG S L, et al. Consistent-teacher: towards reducing inconsistent pseudo-targets in semi- supervised object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 3240-3249. |
[7] | KENNERLEY M, WANG J G, VEERAVALLI B, et al. CAT: exploiting inter-class dynamics for domain adaptive object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 16541-16550. |
[8] |
王兵, 徐裴, 张兴鹏. 傅里叶增强的无偏跨域目标检测研究[J]. 计算机科学与探索, 2024, 18(9): 2436-2448.
DOI |
WANG B, XU P, ZAHNG X P. Research on Fourier augmented unbiased cross-domain object detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2436-2448 (in Chinese). | |
[9] |
李晶晶, 孟利超, 张可, 等. 领域自适应研究综述[J]. 计算机工程, 2021, 47(6): 1-13.
DOI |
LI J J, MENG L C, ZHANG K, et al. Review of studies on domain adaptation[J]. Computer Engineering, 2021, 47(6): 1-13 (in Chinese).
DOI |
|
[10] | 彭国琴, 张浩, 徐丹. 基于域自适应的云南重彩画无监督情感识别[J]. 图学学报, 2022, 43(4): 641-650. |
PENG G Q, ZHANG H, XU D. Unsupervised emotion recognition of Yunnan Heavy Color Paintings based on domain adaptation[J]. Journal of Graphics, 2022, 43(4): 641-650 (in Chinese). | |
[11] | YU Y, ZHAI Y C, ZHANG Y. Align and Adapt: a two-stage adaptation framework for unsupervised domain adaptation[C]// The 30th ACM International Conference on Multimedia. New York: ACM, 2022: 4723-4732. |
[12] |
张桂梅, 陶辉, 鲁飞飞, 等. 基于双源判别器的域自适应城市场景语义分割[J]. 图学学报, 2023, 44(5): 907-917.
DOI |
ZHANG G M, TAO H, LU F F, et al. Domain adaptive urban scene semantic segmentation based on dual-source discriminator[J]. Journal of Graphics, 2023, 44(5): 907-917 (in Chinese). | |
[13] | ZHAO L, WANG L M. Task-specific inconsistency alignment for domain adaptive object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 14197-14206. |
[14] | SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6949-6958. |
[15] | ZHU X G, PANG J M, YANG C Y, et al. Adapting object detectors via selective cross-domain alignment[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 687-696. |
[16] | HSU C C, TSAI Y H, LIN Y Y, et al. Every pixel matters: center-aware feature alignment for domain adaptive object detector[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 733-748. |
[17] | WANG H A, JIA S L, ZENG T Y, et al. Triple feature disentanglement for one-stage adaptive object detection[C]// The 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 5401-5409. |
[18] | FU H L, LIU H H, YUAN J, et al. YOLO-Adaptor: a fast adaptive one-stage detector for non-aligned visible-infrared Object Detection[EB/OL]. (2024-04-25) [2024-05-29]. https://ieeexplore.ieee.org/abstract/document/10508329. |
[19] | SHI C J, ZHENG Y F, CHEN Z. Domain adaptive thermal object detection with unbiased granularity alignment[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 20(9): 274. |
[20] | LI W Y, LIU X Y, YUAN Y X. SIGMA: semantic-complete graph matching for domain adaptive object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5281-5290. |
[21] | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi- supervised deep learning results[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1195-1204. |
[22] | DENG J H, LI W, CHEN Y H, et al. Unbiased mean teacher for cross-domain object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4089-4099. |
[23] | LI Y J, DAI X L, MA C Y, et al. Cross-domain adaptive teacher for object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 7571-7580. |
[24] | CHEN M L, CHEN W J, YANG S C, et al. Learning domain adaptive object detection with probabilistic teacher[EB/OL]. [2024-05-01]. https://proceedings.mlr.press/v162/chen22b.html. |
[25] | DENG J H, XU D L, LI W, et al. Harmonious teacher for cross-domain object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 23829-23838. |
[26] | CAO S C, JOSHI D, GUI L Y, et al. Contrastive mean teacher for domain adaptive object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 23839-23848. |
[27] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-05-29]. https://xueshu.baidu.com/usercenter/paper/show?paperid=195c06c0472x0xe01m0006h0j7739694. |
[28] | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 3213-3223. |
[29] | SAKARIDIS C, DAI D X, VAN GOOL L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126(9): 973-992. |
[30] | MARNISSI M A, FRADI H, SAHBANI A, et al. Feature distribution alignments for object detection in the thermal domain[J]. The Visual Computer, 2023, 39(3): 1081-1093. |
[31] | JOHNSON-ROBERSON M, BARTO C, MEHTA R, et al. Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks?[C]// 2017 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2017: 746-753. |
[32] | CHEN C Q, ZHENG Z B, DING X H, et al. Harmonizing transferability and discriminability for adapting object detectors[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8866-8875. |
[33] | VS V, GUPTA V, OZA P, et al. MeGA-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4514-4524. |
[34] | LI W Y, LIU X Y, YAO X W, et al. SCAN: cross domain object detection with semantic conditioned adaptation[C]// The 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 1421-1428. |
[35] | PIAO Z Q, TANG L B, ZHAO B J. Unsupervised domain-adaptive object detection via localization regression alignment[EB/OL]. (2023-06-19) [2024-05-29]. https://ieeexplore.ieee.org/document/10154573. |
[36] | LI J L, XU R S, MA J, et al. Domain adaptive object detection for autonomous driving under foggy weather[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2023: 612-622. |
[37] | LIU Y B, WANG J H, HUANG C, et al. CIGAR: cross-modality graph reasoning for domain adaptive object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 23776-23786. |
[38] | PANG J, LIU W F, ZHANG B F, et al. MCNet: magnitude consistency network for domain adaptive object detection under inclement environments[J]. Pattern Recognition, 2024, 145: 109947. |
[39] | GUO Y S, YU H, XIE S R, et al. DSCA: a dual semantic correlation alignment method for domain adaptation object detection[J]. Pattern Recognition, 2024, 150: 110329. |
[40] | LIU Y B, WANG J H, WANG W J, et al. CRADA: cross domain object detection with cyclic reconstruction and decoupling adaptation[J]. IEEE Transactions on Multimedia, 2024, 26: 6250-6261. |
[41] | XU C D, ZHAO X R, JIN X, et al. Exploring categorical regularization for domain adaptive object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11721-11730. |
[42] | WU A M, LIU R, HAN Y H, et al. Vector-decomposed disentanglement for domain-invariant object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 9322-9331. |
[43] | LI X F, CHEN W J, XIE D, et al. A free lunch for unsupervised domain adaptive object detection without source data[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 8474-8481. |
[1] | ZHANG Wenxiang, WANG Xiali, WANG Xinyi, YANG Zongbao. A deepfake face detection method that enhances focus on forgery regions [J]. Journal of Graphics, 2025, 46(1): 47-58. |
[2] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
[3] | WANG Yang, MA Chang, HU Ming, SUN Tao, RAO Yuan, YUAN Zhenyu. Lightweight wild bat detection method based on multi-scale feature fusion [J]. Journal of Graphics, 2025, 46(1): 70-80. |
[4] | SUN Qianlai, LIN Shaohang, LIU Dongfeng, SONG Xiaoyang, LIU Jiayao, LIU Ruizhen. Few-shot pointer meters detection method based on meta-learning [J]. Journal of Graphics, 2025, 46(1): 81-93. |
[5] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[6] | CHEN Xiaojiao, SHU Yunfeng, WANG Ruihan, ZHOU Jiahuan, CHEN Wei. Large language model powered UI evaluation system [J]. Journal of Graphics, 2024, 45(6): 1178-1187. |
[7] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[8] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[9] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[10] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[11] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[12] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[13] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[14] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[15] | GONG Yongchao, SHEN Xukun. A deep architecture for reciprocal object detection and instance segmentation [J]. Journal of Graphics, 2024, 45(4): 745-759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||