Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 425-436.DOI: 10.11996/JG.j.2095-302X.2025020425
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
LIU Shengjun1(), TAO Shanshan1, WANG Haibo1, LI Qinsong2, LIU Xinru1(
)
Received:
2024-08-22
Accepted:
2024-10-25
Online:
2025-04-30
Published:
2025-04-24
Contact:
LIU Xinru
About author:
First author contact:LIU Shengjun (1979-), professor, Ph.D. His main research interests cover geometric calculation and analysis, digital image processing, intelligent algorithms, and applications. E-mail:shjliu.cg@csu.edu.cn
Supported by:
CLC Number:
LIU Shengjun, TAO Shanshan, WANG Haibo, LI Qinsong, LIU Xinru. High-precision reconstruction of swept surfaces with a planar path[J]. Journal of Graphics, 2025, 46(2): 425-436.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020425
Fig. 2 Unify curvature field ((a) Original minimum curvature field; (b) Distinguish different types of curvature points; (c) Align strong curvature points; (d) Smooth the area with weak curvature points; (e) Initial tracking path result)
Fig. 7 Quasi uniform non rational cubic B-spline approximation results ((a)~(c) Quasi uniform non rational cubic B-Spline approximation results with 6, 16, and 64 control points, respectively; (d) Curvature comb for quasi uniform non rational cubic B-Spline approximation (64 control points); (e) Curvature comb for line-arc fitting)
Fig. 9 Detection of line arc segments using tangent space representation method ((a) The midpoint line segment in the tangent space representation; (b) Path segmentation results)
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.054 5 | 0.009 4 | 0.013 2 |
本文方法 | 0.014 7 | 0.004 0 | 0.006 9 |
Table 1 Comparison of profile curve errors
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.054 5 | 0.009 4 | 0.013 2 |
本文方法 | 0.014 7 | 0.004 0 | 0.006 9 |
Fig. 11 Comparison of paths generated by different methods with the real path and corresponding sweeping results ((a)~(c) The results of fitting paths using different methods; (d)~(f) The swept surfaces of the true contour along different fitting path)
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.099 9 | 0.038 6 | 0.041 6 |
B样条拟合 | 0.035 0 | 0.017 7 | 0.015 7 |
直线-圆弧段拟合 | 0.031 0 | 0.006 8 | 0.009 0 |
Table 2 Comparison of path curve errors
方法 | 最大误差 | 中间误差 | 平均误差 |
---|---|---|---|
文献[10] | 0.099 9 | 0.038 6 | 0.041 6 |
B样条拟合 | 0.035 0 | 0.017 7 | 0.015 7 |
直线-圆弧段拟合 | 0.031 0 | 0.006 8 | 0.009 0 |
模型 | 方法 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
① | 文献[10] | 0.001 84 | 0.002 99 |
本文方法 | 0.000 70 | 0.000 88 | |
② | 文献[10] | 0.000 37 | 0.000 60 |
本文方法 | 0.000 11 | 0.000 15 | |
③ | 文献[10] | 0.000 20 | 0.0002 96 |
本文方法 | 0.000 16 | 0.000 18 | |
④ | 文献[10] | 0.000 88 | 0.001 19 |
本文方法 | 0.000 32 | 0.000 39 |
Table 3 Comparison of surface reconstruction errors
模型 | 方法 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
① | 文献[10] | 0.001 84 | 0.002 99 |
本文方法 | 0.000 70 | 0.000 88 | |
② | 文献[10] | 0.000 37 | 0.000 60 |
本文方法 | 0.000 11 | 0.000 15 | |
③ | 文献[10] | 0.000 20 | 0.0002 96 |
本文方法 | 0.000 16 | 0.000 18 | |
④ | 文献[10] | 0.000 88 | 0.001 19 |
本文方法 | 0.000 32 | 0.000 39 |
Fig. 12 Profile, path extraction results, and surface reconstruction errors of model ① ((a) Original triangular mesh; (b) Side view of the profile; (c) Top view of the path; (d) Reference[10]; (e) Ours)
Fig. 13 Profile, path extraction results, and surface reconstruction errors of model ② ((a) Original triangular mesh; (b) Side view of the profile; (c) Top view of the path; (d) Reference [10]; (e) Ours)
Fig. 14 Profile, path extraction results, and surface reconstruction errors of model ③ ((a) Original triangular mesh; (b) Side view of the profile; (c) Top view of the path; (d) Reference [10]; (e) Ours)
噪声标准差 | 误差 | |
---|---|---|
MAE | RMSE | |
Std=1.00 | - | - |
Std=0.10 | 0.000 523 | 0.000 62 |
Std=0.01 | 0.000 356 | 0.000 43 |
Table 4 Reconstruction error of noisy models
噪声标准差 | 误差 | |
---|---|---|
MAE | RMSE | |
Std=1.00 | - | - |
Std=0.10 | 0.000 523 | 0.000 62 |
Std=0.01 | 0.000 356 | 0.000 43 |
模型 | 对比 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
部分缺角 | 缺失数据 | 0.000 335 | 0.000 414 |
模型④ | 0.000 344 | 0.000 420 | |
沿路径缺失 | 缺失数据 | 0.000 403 | 0.000 490 |
模型④ | 0.000 402 | 0.000 489 |
Table 5 Reconstruction error of data missing models
模型 | 对比 | 误差 | |
---|---|---|---|
MAE | RMSE | ||
部分缺角 | 缺失数据 | 0.000 335 | 0.000 414 |
模型④ | 0.000 344 | 0.000 420 | |
沿路径缺失 | 缺失数据 | 0.000 403 | 0.000 490 |
模型④ | 0.000 402 | 0.000 489 |
[1] | 邹强. 浅谈实体建模: 历史、现状与未来[J]. 图学学报, 2022, 43(6): 987-1001. |
ZOU Q. A note on solid modeling: history, state of the art, future[J]. Journal of Graphics, 2022, 43(6): 987-1001 (in Chinese). | |
[2] | BUONAMICI F, CARFAGNI M, FURFERI R, et al. Reverse engineering modeling methods and tools: a survey[J]. Computer-Aided Design and Applications, 2018, 15(3): 443-464. |
[3] | YAN C Q, WAN W Q, HUANG K T, et al. A reconstruction strategy based on CSC registration for turbine blades repairing[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101835. |
[4] | 孙修恩, 张典华, 孙昕萍. 三维数字重建在青铜器修复中的应用研究[J]. 图学学报, 2014, 35(6): 912-917. |
SUN X E, ZHANG D H, SUN X P. Application of 3D digital reconstruction in the repair of bronze ware[J]. Journal of Graphics, 2014, 35(6): 912-917 (in Chinese). | |
[5] | KUMAR A, JAIN P K, PATHAK P M. Reverse engineering in product manufacturing: an overview[M]// KATALINICB, TEKICZ. DAAAM International Scientific Book. Vienna: DAAAM International, 2013: 665-678. |
[6] | FAYOLLE P A, FRIEDRICH M. A survey of methods for converting unstructured data to CSG models[J]. Computer-Aided Design, 2024, 168: 103655. |
[7] | YOU L H, YANG X S, PACHULSKI M, et al. Boundary constrained swept surfaces for modelling and animation[J]. Computer Graphics Forum, 2007, 26(3): 313-322. |
[8] | UENG W D, LAI J Y. A sweep-surface fitting algorithm for reverse engineering[J]. Computers in Industry, 1998, 35(3): 261-273. |
[9] | GOYAL M, MURUGAPPAN S, PIYA C, et al. Towards locally and globally shape-aware reverse 3D modeling[J]. Computer-Aided Design, 2012, 44(6): 537-553. |
[10] | KOVÁCS I, VÁRADY T, CRIPPS R. Reconstructing swept surfaces from measured data[J]. The Mathematics of Surfaces XIV, Cripps R. et al. IMA, 2013: 327-344. |
[11] | VARADY T, MARTIN R. Reverse engineering[M]// FARING, HOSCHEKJ, KIMM S. Handbook of Computer Aided Geometric Design. Amsterdam: North Holland, 2002: 651-681. |
[12] | ANDREWS J, SÉQUIN C H. Type-constrained direct fitting of quadric surfaces[J]. Computer-Aided Design and Applications, 2014, 11(1): 107-119. |
[13] | VÁRADY T, MARTIN R R, COX J. Reverse engineering of geometric models-an introduction[J]. Computer-Aided Design, 1997, 29(4): 255-268. |
[14] | BENKO P, KÓS G, VÁRADY T, et al. Constrained fitting in reverse engineering[J]. Computer Aided Geometric Design, 2002, 19(3): 173-205. |
[15] | PORRILL J. Optimal combination and constraints for geometrical sensor data[J]. The International Journal of Robotics Research, 1988, 7(6): 66-77. |
[16] | DE GEETER J, VAN BRUSSEL H, DE SCHUTTER J, et al. A smoothly constrained Kalman filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1171-1177. |
[17] | WERGHI N, FISHER R, ROBERTSON C, et al. Object reconstruction by incorporating geometric constraints in reverse engineering[J]. Computer-Aided Design, 1999, 31(6): 363-399. |
[18] | LI Y Y, WU X K, CHRYSATHOU Y, et al. GlobFit: consistently fitting primitives by discovering global relations[C]// ACM SIGGRAPH 2011 Papers. New York: ACM, 2011: 52. |
[19] | WANG J, GU D X, YU Z Y, et al. A framework for 3D model reconstruction in reverse engineering[J]. Computers & Industrial Engineering, 2012, 63(4): 1189-1200. |
[20] | PROTOPSALTIS A I, FUDOS I. A feature-based approach to re-engineering CAD models from cross sections[J]. Computer- Aided Design and Applications, 2010, 7(5): 739-757. |
[21] | WANG J, GU D X, GAO Z H, et al. Feature-based solid model reconstruction[J]. Journal of Computing and Information Science in Engineering, 2013, 13(1): 011004. |
[22] | KE Y L, FAN S Q, ZHU W D, et al. Feature-based reverse modeling strategies[J]. Computer-Aided Design, 2006, 38(5): 485-506. |
[23] | WANG X X, WANG J L, PAN W F. A sketch-based query interface for 3D CAD model retrieval[C]// 2014 2nd International Conference on Systems and Informatics. New York: IEEE Press, 2014: 881-885. |
[24] | 张伟, 赖喜德, 宋威, 等. 基于截面特征约束的涡轮叶片重构技术[J]. 机械强度, 2014, 36(4): 578-582. |
ZHANG W, LAI X D, SONG W, et al. Reconstruction technique for turbine blade based on constraint of sectional feature[J]. Journal of Mechanical Strength, 2014, 36(4): 578-582 (in Chinese). | |
[25] | BÉNIÈRE R, SUBSOL G, GESQUIÈRE G, et al. A comprehensive process of reverse engineering from 3D meshes to CAD models[J]. Computer-Aided Design, 2013, 45(11): 1382-1393. |
[26] | SARFRAZ M. Computer-aided reverse engineering using simulated evolution on NURBS[J]. Virtual and Physical Prototyping, 2006, 1(4): 243-257. |
[27] | BERGER M, TAGLIASACCHI A, SEVERSKY L M, et al. State of the art in surface reconstruction from point clouds[R]. Strasbourg: The Eurographics Association, 2014. |
[28] | TSAI Y C, HUANG C Y, LIN K Y, et al. Development of automatic surface reconstruction technique in reverse engineering[J]. The International Journal of Advanced Manufacturing Technology, 2009, 42(1): 152-167. |
[29] | BLOOMENTHAL M. Approximation of sweep surfaces by tensor product B-splines[R]. Salt Lake City: University of Utah, 1988. |
[30] | BLOOMENTHAL M, RIESENFELD R F. Approximation of sweep surfaces by tensor product NURBS[C]// Curves and Surfaces in Computer Vision and Graphics II. Bellingham: SPIE, 1992: 132-144. |
[31] | BARONE S. Gear geometric design by B-spline curve fitting and sweep surface modelling[J]. Engineering with Computers, 2001, 17(1): 66-74. |
[32] | BARTOŇ M, POTTMANN H, WALLNER J. Detection and reconstruction of freeform sweeps[J]. Computer Graphics Forum, 2014, 33(2): 23-32. |
[33] | BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. |
[34] | PIEGL L, TILLER W. The NURBS book[M]. Berlin:Springer, 1997. |
[35] | COHEN-STEINER D, MORVAN J M. Restricted Delaunay triangulations and normal cycle[C]// The 19th Annual Symposium on Computational Geometry. New York: ACM, 2003: 312-321. |
[36] | 施法中. 计算机辅助几何设计与非均匀有理B样条(修订版)[M]. 北京: 高等教育出版社, 2013: 378-421. |
SHI FAZHONG. CAGD & NURBS (revised version)[M]. Beijing: Higher Education Press, 2013: 378-421 (in Chinese). | |
[37] | AU C K, YUEN M M F. Feature-based reverse engineering of mannequin for garment design[J]. Computer-Aided Design, 1999, 31(12): 751-759. |
[38] | NGUYEN T P, DEBLED-RENNESSON I. Arc segmentation in linear time[C]// The 14th International Conference on Computer Analysis of Images and Patterns. Cham: Springer, 2011: 84-92. |
[39] | PRATT V. Direct least-squares fitting of algebraic surfaces[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 145-152. |
[40] | KRAFT D. A software package for sequential quadratic programming[J]. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988. |
[41] | TAUBIN G. A signal processing approach to fair surface design[C]// The 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995: 351-358. |
[1] | TAN Kun, WANG Xupeng, ZHAO Jiaxin, HUANG Yuzhe, LI Xu, LI Jiachen. Design of knee joint variable stiffness protector based on lower limb biomechanical characteristics [J]. Journal of Graphics, 2024, 45(5): 1084-1095. |
[2] | FAN Qing1,SHEN Xu-kun1,2. Hand dynamic 3D reconstruction using multiple keypoint-to-keypoint correspondences [J]. Journal of Graphics, 2020, 41(5): 709-715. |
[3] | XIA Hongmei, ZHEN Wenbin . Practice Training Method Study of Machine 3D Surveying and Mapping Based on Reverse Engineering [J]. Journal of Graphics, 2018, 39(5): 1004-1008. |
[4] | Shao Xuqiang1, Liu Yan2, Wang Xinying1. An Efficient Surface Reconstruction Method for Lagrangian Particle Fluid [J]. Journal of Graphics, 2016, 37(5): 607-613. |
[5] | Liu Li, Fu Xiaodong, Wang Ruomei, Luo Xiaonan. An Efficient Mesh Editing for Component-Based 3D Garment Generation [J]. Journal of Graphics, 2016, 37(2): 206-213. |
[6] | Bai Daiping, Li Yanqin, Ding Jing, Yang Yong, Fan Yue. The Point Cloud Simplification Technology of 3D Optical Measurement Applied on Reverse Engineering [J]. Journal of Graphics, 2014, 35(3): 402-407. |
[7] | Zhang Wei. Reconstruction of Triangle Mesh for Unorganized Point Cloud Data with Reconstruction of Triangle Mesh for Unorganized Point Cloud Data with [J]. Journal of Graphics, 2014, 35(2): 188-194. |
[8] | Huang Xueliang, Li Na, Chen Liping. Classification and Solution of 3D Assembly Geometric Constraint System Between Two Rigid Bodies [J]. Journal of Graphics, 2014, 35(2): 236-242. |
[9] | Zhao Bao, Hu Xiaochun, Zhang Qingqing. Reconstruction of Shoe Last Surface Based#br# on Plantar and Instep Girths [J]. Journal of Graphics, 2013, 34(6): 17-21. |
[10] | CHEN Hui-qun, LI Jing-yan. Surface Reconstruction from High-density Point Cloud Based on Deformed Meshes [J]. Journal of Graphics, 2011, 32(2): 64-67. |
[11] | WU Xue-mei, WEN Jia, YU Guang-bin, LI Gui-xian, SHAN De-bin. Surface Reconstruction Based on Points Cloud Data from CMM [J]. Journal of Graphics, 2011, 32(2): 68-72. |
[12] | WANG Yu-hui, ZHANG Yu-ru. Tooth Surface Reconstruction by Catmull-Clark Subdivision and Mesh Modification [J]. Journal of Graphics, 2010, 31(6): 56-62. |
[13] | ZHANG Xing-li, HU Yun-hong, LU Xin-ming. A New Approach to Calculating Parameter Ranges for Systems of Geometric Constraints [J]. Journal of Graphics, 2010, 31(6): 85-92. |
[14] | SHAO Zheng-wei, XI Ping. Data Reduction for Point Cloud Using Octree Coding [J]. Journal of Graphics, 2010, 31(4): 73-76. |
[15] | ZHAO Chen, LIN Qiang, WU Juan, LUO Qiu-ke. The Cut and Fit Method for Geometric Constraint Solution [J]. Journal of Graphics, 2010, 31(3): 40-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||