Journal of Graphics ›› 2025, Vol. 46 ›› Issue (5): 1061-1071.DOI: 10.11996/JG.j.2095-302X.2025051061
• Digital Design and Manufacture • Previous Articles Next Articles
WU Haoyu1(), YANG Xiaochao2, WANG Wei2,3(
), ZHAO Gang1,2,3
Received:
2024-11-11
Accepted:
2025-03-19
Online:
2025-10-30
Published:
2025-09-10
Contact:
WANG Wei
About author:
First author contact:WU Haoyu (1999-), PhD candidate. His main research interests cover computer aided design, computer aided engineering, etc. E-mail:buaawhy@buaa.edu.cn
Supported by:
CLC Number:
WU Haoyu, YANG Xiaochao, WANG Wei, ZHAO Gang. Simulation technology for braiding process of composite materials based on kinematic principles[J]. Journal of Graphics, 2025, 46(5): 1061-1071.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025051061
Fig. 14 Simulation result of circular mandrel with variable section ((a) Expected trajectory; (b) Braiding speed; (c) Yarn trajectory; (d) Distribution of braid angle)
Fig. 15 Simulation result of rectangular mandrel with variable section ((a) Expected trajectory; (b) Braiding speed; (c) Yarn trajectory; (d) Distribution of braid angle)
Fig. 16 Simulation result of aero-engine inlet mandrel with variable section ((a) Expected trajectory; (b) Yarn trajectory; (c) Distribution of braid angle)
[1] |
王士心, 许可. 稀疏监测样本下的复合材料固化过程热源分布动态估计[J]. 图学学报, 2024, 45(2): 388-398.
DOI |
WANG S X, XU K. Dynamic estimation of heat source distribution during solidification of composite materials under sparse monitoring samples[J]. Journal of Graphics, 2024, 45(2): 388-398 (in Chinese).
DOI |
|
[2] |
云峰, 王有治, 宋娇, 等. 增材制造自支撑点阵-实体复合结构拓扑优化方法[J]. 图学学报, 2023, 44(5): 1013-1020.
DOI |
YUN F, WANG Y Z, SONG J, et al. A lattice-solid hybrid structure topology optimization method for support-free additive manufacturing[J]. Journal of Graphics, 2023, 44(5): 1013-1020 (in Chinese).
DOI |
|
[3] | 吴振华, 赵韩, 董玉德, 等. 基于梯度有限元的异质材料实体优化设计[J]. 图学学报, 2012, 33(6): 76-81. |
WU Z H, ZHAO H, DONG Y D, et al. Optimal design of heterogeneous objects based on graded finite elements[J]. Journal of Graphics, 2012, 33(6): 76-81 (in Chinese). | |
[4] | 张建宝, 赵文宇, 王俊锋, 等. 复合材料自动铺放工艺技术研究现状[J]. 航空制造技术, 2014(16): 80-83, 94. |
ZHANG J B, ZHAO W Y, WANG J F, et al. Research status of automated placement processing technology of composites[J]. Aeronautical Manufacturing Technology, 2014(16): 80-83, 94 (in Chinese). | |
[5] | GHAEDSHARAF M, BRUNEL J E, LEBEL L L. Multiscale numerical simulation of the forming process of biaxial braids during thermoplastic braid-trusion: predicting 3D and internal geometry and fiber orientation distribution[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106637. |
[6] | VAN RAVENHORST J H, AKKERMAN R. Overbraiding simulation[M]// KYOSEVY. Advances in braiding technology:specialized techniques and applications. Oxford: Woodhead Publishing, 2016: 431-455. |
[7] | PICKETT A, ERBER A, VON REDEN T, et al. Comparison of analytical and finite element simulation of 2D braiding[J]. Plastics, Rubber and Composites, 2009, 38(9/10): 387-395. |
[8] | BOHLER P, PICKETT A, MIDDENDORF P. Finite element method (FEM) modeling of overbraiding[M]//KYOSEV Y. Advances in braiding technology:specialized techniques and applications. Oxford: Woodhead Publishing, 2016: 457-475. |
[9] | PICKETT A K, SIRTAUTAS J, ERBER A. Braiding simulation and prediction of mechanical properties[J]. Applied Composite Materials, 2009, 16(6): 345-364. |
[10] | VU A N, GROUVE W J B, WARNET L L, et al. Modeling anisotropic friction in triaxial overbraiding simulations[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107958. |
[11] | VU A N, GROUVE W J B, DE ROOIJ M B, et al. A mesoscopic model for inter-yarn friction[J]. Composites Part A: Applied Science and Manufacturing, 2024, 180: 108070. |
[12] | CZICHOS R, BAREIRO O, PICKETT A K, et al. Experimental and numerical studies of process variabilities in biaxial carbon fiber braids[J]. International Journal of Material Forming, 2021, 14(1): 39-54. |
[13] | LU X Y, BO P B, WANG L Q. Real-time 3D topological braiding simulation with penetration-free guarantee[J]. Computer-Aided Design, 2023, 164: 103594. |
[14] | LI Z J, DAI H L, LIU Z G, et al. Micro-CT based parametric modeling and damage analysis of three-dimensional rotary-five-directional braided composites under tensile load[J]. Composite Structures, 2023, 309: 116734. |
[15] | MICHAELI W, ROSENBAUM U, JEHRKE M. Processing strategy for braiding of complex-shaped parts based on a mathematical process description[J]. Composites Manufacturing, 1990, 1(4): 243-251. |
[16] | DU G W, POPPER P. Analysis of a circular braiding process for complex shapes[J]. The Journal of the Textile Institute, 1994, 85(3): 316-337. |
[17] | KESSELS J F A, AKKERMAN R. Prediction of the yarn trajectories on complex braided preforms[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1073-1081. |
[18] | LONG A C. Process modelling for liquid moulding of braided preforms[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(7): 941-953. |
[19] | FOULADI A, NEDOUSHAN R J. Prediction and optimization of yarn path in braiding of mandrels with flat faces[J]. Journal of Composite Materials, 2018, 52(5): 581-592. |
[20] | MONNOT P, LÉVESQUE J, LEBEL L L. Automated braiding of a complex aircraft fuselage frame using a non-circular braiding model[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 48-63. |
[21] | VAN RAVENHORST J H, AKKERMAN R. A yarn interaction model for circular braiding[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 254-263. |
[22] | WU Z Y, SHU Z X, KYOSEV Y, et al. Numerical prediction methodology for tow orientation on irregular mandrels with constant cross-sections[J]. Journal of Composite Materials, 2019, 53(8): 1067-1078. |
[23] | GONDRAN M, ABDIN Y, GENDREAU Y, et al. Automated braiding of non-axisymmetric structures using an iterative inverse solution with angle control[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106288. |
[24] | HANS T, CICHOSZ J, BRAND M, et al. Finite element simulation of the braiding process for arbitrary mandrel shapes[J]. Composites Part A: Applied Science and Manufacturing, 2015, 77: 124-132. |
[25] | HEIECK F, HERMANN F, MIDDENDORF P, et al. Influence of the cover factor of 2D biaxial and triaxial braided carbon composites on their in-plane mechanical properties[J]. Composite Structures, 2017, 163: 114-122. |
[26] | WEHRKAMP-RICHTER T, HINTERHÖLZL R, PINHO S T. Damage and failure of triaxial braided composites under multi-axial stress states[J]. Composites Science and Technology, 2017, 150: 32-44. |
[27] | SWERY E E, HANS T, BULTEZ M, et al. Complete simulation process chain for the manufacturing of braided composite parts[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 378-390. |
[28] | VAN RAVENHORST J H. Design tools for circular overbraiding of complex mandrels[D]. Enschede: University of Twente, 2018. |
[29] | ARGYRIS J. An excursion into large rotations[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1/3): 85-155. |
[30] | BJÖRCK Å. Numerics of gram-schmidt orthogonalization[J]. Linear Algebra and its Applications, 1994, 197-198: 297-316. |
[31] | VAN RAVENHORST J H, AKKERMAN R. Circular braiding take-up speed generation using inverse kinematics[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 147-158. |
[1] | GAO Yue, HAN Hong-lei. Audience screen display system based on light-emitting devices [J]. Journal of Graphics, 2023, 44(4): 784-793. |
[2] | LI Xiang1,2, WANG Xue-wen1,2, XIE Jia-cheng1,2, QIAO Chun-guang1,2 YANG Zhao-jian1,2 . Research on Key Technologies of Virtual Operation of Mining Equipment Under Complex Conditions [J]. Journal of Graphics, 2019, 40(2): 403-409. |
[3] | ZHANG Ruiqiu, ZHANG Xuchong, SUN Wei. Accuracy Analysis of a Planar Mechanism Based on Virtual Model Technology [J]. Journal of Graphics, 2017, 38(2): 278-282. |
[4] | Zhao Chuan, Yu Suihuai, Li Bingchao, Zhang Shuai. Using Virtual Computer Analysis to Optimize the Forklift Vision [J]. Journal of Graphics, 2016, 37(5): 675-680. |
[5] | Sun Yuying, Ge Yijing, Wang Wei, Wu Xu, Hong Yang. Virtual Simulation Experiment Development of Pipe Network Performance for#br# Air-Conditioning Duct System Teaching [J]. Journal of Graphics, 2016, 37(4): 550-555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||