Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 505-515.DOI: 10.11996/JG.j.2095-302X.2024030505
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
JIA Mingchao1(), FENG Bin2, WU Peng1, ZHANG Kun1, SANG Shengju2(
)
Received:
2023-08-31
Accepted:
2023-11-27
Online:
2024-06-30
Published:
2024-06-11
Contact:
SANG Shengju (1965-), professor, Ph.D. His main research interests cover robotics, embedded technology, etc. E-mail:About author:
JIA Mingchao (1998-), master student. His main research interest covers path planning. E-mail:1216135454@qq.com
Supported by:
CLC Number:
JIA Mingchao, FENG Bin, WU Peng, ZHANG Kun, SANG Shengju. A path planning for cultural tourism service robot combining improved A* algorithm and improved dynamic window approach[J]. Journal of Graphics, 2024, 45(3): 505-515.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030505
α | 舍弃的搜索方向 |
---|---|
0 | n1,n4,n6 |
(0,90°) | n4,n6,n7 |
90° | n6,n7,n8 |
(90°,180°) | n5,n7,n8 |
180°或-180° | n3,n5,n8 |
(-180°,-90°) | n2,n3,n5 |
-90° | n1,n2,n3 |
(-90°,0) | n1,n2,n4 |
Table 1 Search neighborhood selection strategy
α | 舍弃的搜索方向 |
---|---|
0 | n1,n4,n6 |
(0,90°) | n4,n6,n7 |
90° | n6,n7,n8 |
(90°,180°) | n5,n7,n8 |
180°或-180° | n3,n5,n8 |
(-180°,-90°) | n2,n3,n5 |
-90° | n1,n2,n3 |
(-90°,0) | n1,n2,n4 |
向量A方向 | 向量B方向 | 半径R | 圆心点Ox | 圆心点Oy | 起始弧度F | 终止弧度S |
---|---|---|---|---|---|---|
↑ | ↗ | R | x1+R | (y1+y2)/2 | π | 3π/4 |
↑ | ↖ | R | x1-R | (y1+y2)/2 | 0 | π/4 |
→ | ↗ | R | (x1+x2)/2 | y1+R | -π/2 | -π/4 |
→ | ↘ | R | (x1+x2)/2 | y1-R | π/2 | π/4 |
↓ | ↘ | R | x1+R | (y1+y2)/2 | -π | -3π/4 |
↓ | ↙ | R | x1-R | (y1+y2)/2 | 0 | -π/4 |
← | ↙ | R | (x1+x2)/2 | y1-R | π/2 | 3π/4 |
← | ↖ | R | (x1+x2)/2 | y1+R | -π/2 | -3π/4 |
↗ | ↑ | R | x2-R | (y3+y2)/2 | -π/4 | 0 |
↗ | → | R | (x3+x2)/2 | y2-R | 3π/4 | π/2 |
↘ | → | R | (x3+x2)/2 | y2+R | -3π/4 | -π/2 |
↘ | ↓ | R | x2-R | (y3+y2)/2 | π/4 | 0 |
↙ | ↓ | R | x2+R | (y3+y2)/2 | 3π/4 | π |
↙ | ← | R | (x3+x2)/2 | y2+R | -π/4 | -π/2 |
↖ | ↑ | R | x2+R | (y3+y2)/2 | -3π/4 | -π |
↖ | ← | R | (x3+x2)/2 | y2-R | π/4 | π/2 |
↑ | → | 1/2 | (x1+x3)/2 | (y1+y3)/2 | π | π/2 |
↑ | ← | 1/2 | (x1+x3)/2 | (y1+y3)/2 | 0 | π/2 |
→ | ↑ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | -π/2 | 0 |
→ | ↓ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | π/2 | 0 |
↓ | → | 1/2 | (x1+x3)/2 | (y1+y3)/2 | -π | -π/2 |
↓ | ← | 1/2 | (x1+x3)/2 | (y1+y3)/2 | 0 | -π/2 |
← | ↑ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | -π/2 | -π |
← | ↓ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | π/2 | π |
Table 2 Arc optimization calculation result table
向量A方向 | 向量B方向 | 半径R | 圆心点Ox | 圆心点Oy | 起始弧度F | 终止弧度S |
---|---|---|---|---|---|---|
↑ | ↗ | R | x1+R | (y1+y2)/2 | π | 3π/4 |
↑ | ↖ | R | x1-R | (y1+y2)/2 | 0 | π/4 |
→ | ↗ | R | (x1+x2)/2 | y1+R | -π/2 | -π/4 |
→ | ↘ | R | (x1+x2)/2 | y1-R | π/2 | π/4 |
↓ | ↘ | R | x1+R | (y1+y2)/2 | -π | -3π/4 |
↓ | ↙ | R | x1-R | (y1+y2)/2 | 0 | -π/4 |
← | ↙ | R | (x1+x2)/2 | y1-R | π/2 | 3π/4 |
← | ↖ | R | (x1+x2)/2 | y1+R | -π/2 | -3π/4 |
↗ | ↑ | R | x2-R | (y3+y2)/2 | -π/4 | 0 |
↗ | → | R | (x3+x2)/2 | y2-R | 3π/4 | π/2 |
↘ | → | R | (x3+x2)/2 | y2+R | -3π/4 | -π/2 |
↘ | ↓ | R | x2-R | (y3+y2)/2 | π/4 | 0 |
↙ | ↓ | R | x2+R | (y3+y2)/2 | 3π/4 | π |
↙ | ← | R | (x3+x2)/2 | y2+R | -π/4 | -π/2 |
↖ | ↑ | R | x2+R | (y3+y2)/2 | -3π/4 | -π |
↖ | ← | R | (x3+x2)/2 | y2-R | π/4 | π/2 |
↑ | → | 1/2 | (x1+x3)/2 | (y1+y3)/2 | π | π/2 |
↑ | ← | 1/2 | (x1+x3)/2 | (y1+y3)/2 | 0 | π/2 |
→ | ↑ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | -π/2 | 0 |
→ | ↓ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | π/2 | 0 |
↓ | → | 1/2 | (x1+x3)/2 | (y1+y3)/2 | -π | -π/2 |
↓ | ← | 1/2 | (x1+x3)/2 | (y1+y3)/2 | 0 | -π/2 |
← | ↑ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | -π/2 | -π |
← | ↓ | 1/2 | (x1+x3)/2 | (y1+y3)/2 | π/2 | π |
Fig. 6 Improved A* algorithm simulation experiment comparison ((a) Traditional A* algorithm; (b) Only improve the evaluation function; (c) Only improve the neighborhood selection strategy; (d) Only improved cubic polyline optimization; (e) Ours)
算法 | 路径长度/m | 路径节点数目 | 拐点数目 | 遍历节点数目 | 运行时间/s | 密集区域 | 减速程度 | 禁止区域 |
---|---|---|---|---|---|---|---|---|
传统A*算法 | 30.727 9 | 28 | 9 | 826 | 0.050 5 | 穿越 | 不适当 | 穿越 |
仅改进评价函数 | 33.313 7 | 31 | 10 | 410 | 0.007 3 | 否 | 适当 | 否 |
仅改进搜索策略 | 30.727 9 | 28 | 8 | 488 | 0.011 8 | 穿越 | 不适当 | 穿越 |
仅改进折线优化 | 30.213 9 | 8 | 6 | 826 | 0.059 5 | 穿越 | 不适当 | 穿越 |
本文算法 | 32.570 6 | 9 | 7 | 253 | 0.008 4 | 否 | 适当 | 否 |
Table 3 Improved A* algorithm simulation experimental data
算法 | 路径长度/m | 路径节点数目 | 拐点数目 | 遍历节点数目 | 运行时间/s | 密集区域 | 减速程度 | 禁止区域 |
---|---|---|---|---|---|---|---|---|
传统A*算法 | 30.727 9 | 28 | 9 | 826 | 0.050 5 | 穿越 | 不适当 | 穿越 |
仅改进评价函数 | 33.313 7 | 31 | 10 | 410 | 0.007 3 | 否 | 适当 | 否 |
仅改进搜索策略 | 30.727 9 | 28 | 8 | 488 | 0.011 8 | 穿越 | 不适当 | 穿越 |
仅改进折线优化 | 30.213 9 | 8 | 6 | 826 | 0.059 5 | 穿越 | 不适当 | 穿越 |
本文算法 | 32.570 6 | 9 | 7 | 253 | 0.008 4 | 否 | 适当 | 否 |
组别 | X | K | 性能指标 |
---|---|---|---|
1 | 0.30 | 79 | 穿越障碍物密集区域 |
2 | 0.30 | 80 | 穿越障碍物密集区域 |
3 | 0.30 | 81 | 穿越障碍物密集区域 |
4 | 0.10 | 79 | 穿越障碍物狭窄区域 |
5 | 0.10 | 80 | 穿越障碍物狭窄区域 |
6 | 0.10 | 81 | 穿越障碍物狭窄区域 |
7 | 0.06 | 79 | 穿越障碍物狭窄区域 |
8 | 0.06 | 80 | 穿越障碍物狭窄区域 |
9 | 0.06 | 81 | 穿越障碍物狭窄区域 |
10 | 0.05 | 79 | 穿越障碍物狭窄区域 |
11 | 0.05 | 80 | 路径质量优 |
12 | 0.05 | 81 | 路径质量较优 |
13 | 0.05 | 100 | 穿越减速慢行区域 |
14 | 0.04 | 80 | 路径拐点数目增多 |
15 | 0.03 | 80 | 路径拐点数目增多 |
Table 4 Parameter debugging experiment
组别 | X | K | 性能指标 |
---|---|---|---|
1 | 0.30 | 79 | 穿越障碍物密集区域 |
2 | 0.30 | 80 | 穿越障碍物密集区域 |
3 | 0.30 | 81 | 穿越障碍物密集区域 |
4 | 0.10 | 79 | 穿越障碍物狭窄区域 |
5 | 0.10 | 80 | 穿越障碍物狭窄区域 |
6 | 0.10 | 81 | 穿越障碍物狭窄区域 |
7 | 0.06 | 79 | 穿越障碍物狭窄区域 |
8 | 0.06 | 80 | 穿越障碍物狭窄区域 |
9 | 0.06 | 81 | 穿越障碍物狭窄区域 |
10 | 0.05 | 79 | 穿越障碍物狭窄区域 |
11 | 0.05 | 80 | 路径质量优 |
12 | 0.05 | 81 | 路径质量较优 |
13 | 0.05 | 100 | 穿越减速慢行区域 |
14 | 0.04 | 80 | 路径拐点数目增多 |
15 | 0.03 | 80 | 路径拐点数目增多 |
算法 | 路径长度/ m | 路径节点 数目 | 是否有曲率 突变 |
---|---|---|---|
传统A*算法 | 26.000 0 | 27 | 是 |
圆弧优化 | 24.258 1 | 54 | 否 |
Table 5 Smoothness optimization simulation data
算法 | 路径长度/ m | 路径节点 数目 | 是否有曲率 突变 |
---|---|---|---|
传统A*算法 | 26.000 0 | 27 | 是 |
圆弧优化 | 24.258 1 | 54 | 否 |
Fig. 9 Complex environment fusion algorithm simulation experiment ((a) Initial global path; (b) Set up obstacles; (c) Get around dynamic obstacles; (d) Get around static obstacles one; (e) Get around static obstacles two; (f) The final path of the fusion algorithm)
Fig. 10 Narrow environment fusion algorithm simulation experiment ((a) Initial global path; (b) Get around obstacles; (c) The final path of the fusion algorithm)
[1] | SÁNCHEZ-IBÁÑEZ J R, PÉREZ-DEL-PULGAR C J, GARCÍA-CEREZO A. Path planning for autonomous mobile robots: a review[J]. Sensors, 2021, 21(23): 7898. |
[2] |
WANG X D, ZHANG H W, LIU S, et al. Path planning of scenic spots based on improved A* algorithm[J]. Scientific Reports, 2022, 12: 1320.
DOI PMID |
[3] | TANG G, TANG C Q, CLARAMUNT C, et al. Geometric A-star algorithm: an improved A-star algorithm for AGV path planning in a port environment[J]. IEEE Access, 2021, 9: 59196-59210. |
[4] | LONG T Y. Improved A-star algorithm in efficiency enhancing and path smoothing[C]// 2023 IEEE International Conference on Control, Electronics and Computer Technology. New York: IEEE Press, 2023: 28-31. |
[5] | WANG X Y, LIU Z S, LIU J H. Mobile robot path planning based on an improved A* algorithm[C]// International Conference on Computer Graphics, Artificial Intelligence, and Data Processing. New York: SPIE Press, 2023, 12604: 1093-1098. |
[6] | DING J, ZHOU Y X, HUANG X, et al. An improved RRT* algorithm for robot path planning based on path expansion heuristic sampling[J]. Journal of Computational Science, 2023, 67: 101937. |
[7] | 王海滨, 张弛. 基于蚁群算法优化的移动机器人的路径规划[J]. 自动化应用, 2023, 64(11): 35-38. |
WANG H B, ZHANG C. Path planning of mobile robot based on ant colony optimization[J]. Automation Application, 2023, 64(11): 35-38 (in Chinese). | |
[8] | 王瑞民, 张江, 崔俊杰, 等. 基于改进DWA算法的无人车避障研究[J]. 机械设计与制造工程, 2023, 52(5): 37-42. |
WANG R M, ZHANG J, CUI J J, et al. Research on obstacle avoidance of unmanned vehicle based on improved DWA algorithm[J]. Machine Design and Manufacturing Engineering, 2023, 52(5): 37-42 (in Chinese). | |
[9] |
徐小强, 王明勇, 冒燕. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2020, 40(12): 3508-3512.
DOI |
XU X Q, WANG M Y, MAO Y. Path planning of mobile robot based on improved artificial potential field method[J]. Journal of Computer Applications, 2020, 40(12): 3508-3512 (in Chinese).
DOI |
|
[10] | 滕景佳, 毛建中. 融合改进A* 算法与动态窗口法的机器人路径规划[J/OL]. 机械科学与技术. [2023-06-15]. https://doi.org/10.13433/j.cnki.1003-8728.20230218. |
TENG J J, MAO J Z. Robot path planning integrating improved A* algorithm and dynamic window method[J/OL]. Mechanical Science and Technology. [2023-06-15]. https://doi.org/10.13433/j.cnki.1003-8728.20230218 (in Chinese). | |
[11] | 齐款款, 李二超, 毛玉燕. 改进A*算法融合自适应DWA的移动机器人动态路径规划[J]. 数据采集与处理, 2023, 38(2): 451-467. |
QI K K, LI E C, MAO Y Y. Dynamic path planning of mobile robot based on improved A* algorithm and adaptive DWA[J]. Journal of Data Acquisition and Processing, 2023, 38(2): 451-467 (in Chinese). | |
[12] | 潘富强, 曾成, 马国红, 等. 一种融合改进A*算法与改进动态窗口法的AGV路径规划[J]. 传感技术学报, 2023, 36(1): 68-77. |
PAN F Q, ZENG C, MA G H, et al. A novel AGV path planning algorithm based on improved A* algorithm and improved dynamic window approach[J]. Chinese Journal of Sensors and Actuators, 2023, 36(1): 68-77 (in Chinese). | |
[13] | 郭银景, 侯佳辰, 吴琪, 等. AUV全局路径规划环境建模算法研究进展[J]. 舰船科学技术, 2021, 43(17): 12-18. |
GUO Y J, HOU J C, WU Q, et al. Research progress of AUV global path planning environment modeling algorithm[J]. Ship Science and Technology, 2021, 43(17): 12-18 (in Chinese). | |
[14] | LAI R S, WU Z Y, LIU X G, et al. Fusion algorithm of the improved A* algorithm and segmented Bézier curves for the path planning of mobile robots[J]. Sustainability, 2023, 15(3): 2483. |
[15] | 邓云峥, 黄翼虎. 密集障碍环境下的改进DWA避障算法[J]. 计算机与现代化, 2023, (7): 48-53. |
DENG Y Z, HUANG Y H. Improved DWA obstacle avoidance algorithm in dense obstacle environment[J]. Computer and Modernization, 2023, (7): 48-53 (in Chinese). |
[1] | MA Hong-yu , SHEN Li-yong , JIANG Xin , ZOU Qiang , YUAN Chun-ming. A survey of path planning and feedrate interpolation in computer numerical control [J]. Journal of Graphics, 2022, 43(6): 967-986. |
[2] | DENG Yang-yang, LI Wei-shi . Partitioned scanning path planning for selective laser melting of thin-walled parts [J]. Journal of Graphics, 2022, 43(1): 149-155. |
[3] | MA Tian, YANG Qin, LI Zhan-i. Orthodontic path planning based on improved multi-PSO [J]. Journal of Graphics, 2021, 42(4): 615-622. |
[4] | LI Zhan-li, LIU Tong-xin, LI Hong-an, SUN Zhi-hao. Research on path planning of teeth movement in invisible orthodontic [J]. Journal of Graphics, 2020, 41(4): 556-566. |
[5] | HU Peng, LI Lin, YANG Jing, LIU Xiao-ping . Research on Path Planning Method of Ancient Architectural Scene Based on Depth Map and Aesthetic Evaluation [J]. Journal of Graphics, 2019, 40(6): 1032-1037. |
[6] | SUN Rui, ZHANG Wen-sheng . Smooth Path Planning of Mobile Robot Based on Improved Ant Colony Algorithm [J]. Journal of Graphics, 2019, 40(2): 344-350. |
[7] | LIU Jiawei, CHEN Shuangmin, WANG Xiaoli, XIN Shiqing. Optimal Nozzle Path Planning in 3D Printing [J]. Journal of Graphics, 2017, 38(1): 34-38. |
[8] | Wang Fenghong, Deng Zhiyan, Chen Chikun. Mobile robot path planning based on improved genetic algorithm [J]. Journal of Graphics, 2012, 33(3): 41-45. |
[9] | KANG Liang, ZHAO Chun-xia, GUO Jian-hui. Path Planning for Mobile Robot in Unknown Environment Based on Cubic Spiral Bug Algorithm [J]. Journal of Graphics, 2010, 31(1): 30-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||