Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 539-547.DOI: 10.11996/JG.j.2095-302X.2024030539
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
SHI Min1(), ZHUO Xinru1, SUN Bilian1, HAN Guoqing1, ZHU Dengming2(
)
Received:
2023-08-22
Accepted:
2023-12-10
Online:
2024-06-30
Published:
2024-06-11
Contact:
ZHU Dengming (1973-), associate researcher, Ph.D. His main research interests cover virtual reality, graphics, etc. E-mail:About author:
SHI Min (1975-), associate professor, Ph.D. Her main research interests cover graphics, virtual reality, etc. E-mail:shi_min@ncepu.edu.cn
Supported by:
CLC Number:
SHI Min, ZHUO Xinru, SUN Bilian, HAN Guoqing, ZHU Dengming. Unsupervised clothing animation prediction for different styles[J]. Journal of Graphics, 2024, 45(3): 539-547.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030539
模型 | 顶点数 | 面数 | 关节 |
---|---|---|---|
人体 | 6 890 | 13 776 | 24 |
服装 | 3 100 | 6 034 | - |
Table 1 Setting details of dataset
模型 | 顶点数 | 面数 | 关节 |
---|---|---|---|
人体 | 6 890 | 13 776 | 24 |
服装 | 3 100 | 6 034 | - |
设置 | 权重 | ||||
---|---|---|---|---|---|
ω | ωbend | ωedge | ωgra | ωcol | |
数值 | 0.000 01 | 0.000 05 | 15 | 1 | 250 |
Table 2 Setting of loss weights
设置 | 权重 | ||||
---|---|---|---|---|---|
ω | ωbend | ωedge | ωgra | ωcol | |
数值 | 0.000 01 | 0.000 05 | 15 | 1 | 250 |
款式 | 边损失/ ×10-2 | 曲率损失/ ×10-2 | 穿透损失/ ×10-4 | 穿透率/ % |
---|---|---|---|---|
0 | 1.84 | 5.06 | 1.63 | 0.37 |
1 | 1.76 | 5.52 | 1.90 | 0.38 |
2 | 1.63 | 6.26 | 1.82 | 0.37 |
3 | 1.52 | 6.37 | 1.79 | 0.37 |
Mean | 1.70 | 5.80 | 1.79 | 0.37 |
Table 3 Collision loss of reconstruction
款式 | 边损失/ ×10-2 | 曲率损失/ ×10-2 | 穿透损失/ ×10-4 | 穿透率/ % |
---|---|---|---|---|
0 | 1.84 | 5.06 | 1.63 | 0.37 |
1 | 1.76 | 5.52 | 1.90 | 0.38 |
2 | 1.63 | 6.26 | 1.82 | 0.37 |
3 | 1.52 | 6.37 | 1.79 | 0.37 |
Mean | 1.70 | 5.80 | 1.79 | 0.37 |
方法 | 边损失/ ×10-2 | 曲率损失/ ×10-2 | 穿透率/ % |
---|---|---|---|
TailorNet | 6.11 | 7.52 | 13.03 |
PBNS | 3.23 | 7.12 | 2.18 |
LBS | 9.51 | 14.30 | 26.58 |
本文方法 | 2.62 | 6.98 | 0.02 |
Table 4 Quantitative evaluation
方法 | 边损失/ ×10-2 | 曲率损失/ ×10-2 | 穿透率/ % |
---|---|---|---|
TailorNet | 6.11 | 7.52 | 13.03 |
PBNS | 3.23 | 7.12 | 2.18 |
LBS | 9.51 | 14.30 | 26.58 |
本文方法 | 2.62 | 6.98 | 0.02 |
方法 | 边损失/ ×10-2 | 曲率损失/ ×10-2 | 穿透损失/ ×10-4 | 穿透率/ % |
---|---|---|---|---|
消融实验 | 2.97 | 6.53 | 5.66 | 1.07 |
本文方法 | 1.68 | 5.74 | 1.80 | 0.36 |
Table 5 Comparison of ablation experiments
方法 | 边损失/ ×10-2 | 曲率损失/ ×10-2 | 穿透损失/ ×10-4 | 穿透率/ % |
---|---|---|---|---|
消融实验 | 2.97 | 6.53 | 5.66 | 1.07 |
本文方法 | 1.68 | 5.74 | 1.80 | 0.36 |
[1] | PROVOT X. Deformation constraints in a mass-spring model to describe rigid cloth behavior[EB/OL]. [2023-01-13]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1e550v00em0c0pk0w10u0850mb695262&site=xueshu_se. |
[2] | ROHMER D, POPA T, CANI M P, et al. Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles[J]. ACM Transactions on Graphics, 2010, 29(6): 157: 1-157: 8. |
[3] | WU L H, WU B T, YANG Y, et al. A safe and fast repulsion method for GPU-based cloth self collisions[J]. ACM Transactions on Graphics, 2020, 40(1): 1-18. |
[4] | CLO Virtual Fashion. Marvelous designer[EB/OL]. [2023-06-30]. https://www.marvelousdesigner.2023.6.30. |
[5] | WANG T Y, SHAO T J, FU K, et al. Learning an intrinsic garment space for interactive authoring of garment animation[J]. ACM Transactions on Graphics, 2019, 38(6): 220: 1-220: 12. |
[6] | ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: shape completion and animation of people[C]// SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers. New York: ACM, 2005: 408-416. |
[7] | LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[M]// Seminal Graphics Papers: Pushing the Boundaries, Volume 2. New York: ACM, 2023: 851-866. |
[8] | PATEL C, LIAO Z, PONS-MOLL G. TailorNet: predicting clothing in 3D as a function of human pose, shape and garment style[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 7365-7375. |
[9] | SAITO S, YANG J L, MA Q L, et al. SCANimate: weakly supervised learning of skinned clothed avatar networks[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2886-2897. |
[10] | SANTESTEBAN I, OTADUY M A, CASAS D. Learning- based animation of clothing for virtual try-on[J]. Computer Graphics Forum, 2019, 38(2): 355-366. |
[11] | LI C, TANG M, TONG R F, et al. P-cloth: interactive complex cloth simulation on multi-GPU systems using dynamic matrix assembly and pipelined implicit integrators[J]. ACM Transactions on Graphics, 2020, 39(6): 180: 1-180: 15. |
[12] | WANG H M. GPU-based simulation of cloth wrinkles at submillimeter levels[J]. ACM Transactions on Graphics, 2021, 40(4): 169: 1-169: 14. |
[13] | ZHU H M, CAO Y, JIN H, et al. Deep Fashion3D: a dataset and benchmark for 3D garment reconstruction from single images[C]// European Conference on Computer Vision. Cham: Springer, 2020: 512-530. |
[14] | HE Y, XIE H R, MIYATA K. Sketch2Cloth: sketch-based 3D garment generation with unsigned distance fields[EB/OL]. [2023-02-10]. http://arxiv.org/abs/2303.00167.pdf. |
[15] | BERTICHE H, MADADI M, ESCALERA S. PBNS: physically based neural simulator for unsupervised garment pose space deformation[EB/OL]. [2023-01-13]. http://arxiv.org/abs/2012.11310.pdf. |
[16] | PAN X Y, MAI J M, JIANG X W, et al. Predicting loose-fitting garment deformations using bone-driven motion networks[C]// ACM SIGGRAPH 2022 Conference Proceedings. New York: ACM, 2022: 1-10. |
[17] | LI Y D, TANG M, YANG Y, et al. N-cloth: predicting 3D cloth deformation with mesh-based networks[J]. Computer Graphics Forum, 2022, 41(2): 547-558. |
[18] | MA Q L, YANG J L, BLACK M J, et al. Neural point-based shape modeling of humans in challenging clothing[C]// 2022 International Conference on 3D Vision (3DV). New York: IEEE Press, 2022: 679-689. |
[19] | TIWARI L, BHOWMICK B. DeepDraper: fast and accurate 3D garment draping over a 3D human body[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 1416-1426. |
[20] | CHONG T, SHEN I C, UMETANI N, et al. Per garment capture and synthesis for real-time virtual try-on[C]// UIST ’21: The 34th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2021: 457-469. |
[21] | WU Z H, LIN G S, TAO Q Y, et al. M2E-try on net: fashion from model to everyone[C]// The 27th ACM International Conference on Multimedia. New York: ACM, 2019: 293-301. |
[22] | PETROVICH M, BLACK M J, VAROL G. Action-conditioned 3D human motion synthesis with transformer VAE[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 10985-10995. |
[23] | TEVET G, RAAB S, GORDON B, et al. Human motion diffusion model[EB/OL]. [2023-01-13]. http://arxiv.org/abs/2209.14916.pdf. |
[24] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. |
[25] | MAHMOOD N, GHORBANI N, TROJE N F, et al. AMASS: archive of motion capture as surface shapes[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 5441-5450. |
[26] | VIDAURRE R, SANTESTEBAN I, GARCES E, et al. Fully convolutional graph neural networks for parametric virtual try-on[J]. Computer Graphics Forum, 2020, 39(8): 145-156. |
[27] | ALLEN B, CURLESS B, POPOVIĆ Z. The space of human body shapes: reconstruction and parameterization from range scans[J]. ACM Transactions on Graphics (TOG), 2003, 22(3): 587-594. |
[1] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. |
[2] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[3] | LIU Yi, QIU Junhai, ZHANG Jiaxing, ZHANG Xiaofeng, WANG Hua, ZHANG Caiming. A highly robust image segmentation algorithm based on trade-off factors and multidimensional spatial metrics [J]. Journal of Graphics, 2024, 45(3): 482-494. |
[4] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[5] | LI Jiaqi, WANG Hui, GUO Yu. Classification and segmentation network based on Transformer for triangular mesh [J]. Journal of Graphics, 2024, 45(1): 78-89. |
[6] | LV Heng, YANG Hongyu. A 3D human pose estimation approach based on spatio-temporal motion interaction modeling [J]. Journal of Graphics, 2024, 45(1): 159-168. |
[7] | HUANG Shao-nian, WEN Pei-ran, QUAN Qi, CHEN Rong-yuan. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection [J]. Journal of Graphics, 2023, 44(6): 1173-1182. |
[8] | SHI Jia-hao, YAO Li. Video captioning based on semantic guidance [J]. Journal of Graphics, 2023, 44(6): 1191-1201. |
[9] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[10] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. |
[11] | SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu. Tunnel fire detection based on improved student-teacher network [J]. Journal of Graphics, 2023, 44(5): 978-987. |
[12] | HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5 [J]. Journal of Graphics, 2023, 44(4): 667-676. |
[13] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. |
[14] | FENG Zun-deng, WANG Hong-yuan, LIN Long, SUN Bo-yan, CHEN Hai-qin. Unsupervised person re-identification with multi-branch attention network and similarity learning strategy [J]. Journal of Graphics, 2023, 44(2): 280-290. |
[15] | YAN Shan-wu, XIAO Hong-bing, WANG Yu, SUN Mei. Video anomaly detection combining pedestrian spatiotemporal information [J]. Journal of Graphics, 2023, 44(1): 95-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||