Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 528-538.DOI: 10.11996/JG.j.2095-302X.2024030528
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
YAN Jiahao(), LV Jian(
), HOU Yukang, MO Xinzhu
Received:
2023-07-31
Accepted:
2023-12-07
Online:
2024-06-30
Published:
2024-06-11
Contact:
LV Jian (1983-), associate professor, Ph.D. His main research interests cover virtual reality, industrial design and interactive design, etc. E-mail:About author:
YAN Jiahao (1998-), master student. His main research interests cover virtual reality and industrial design. E-mail:314383452@qq.com
Supported by:
CLC Number:
YAN Jiahao, LV Jian, HOU Yukang, MO Xinzhu. Research on the influence of eye movement interaction frequency on visual fatigue in virtual reality[J]. Journal of Graphics, 2024, 45(3): 528-538.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030528
研究点 | 方法 | 优点 | 缺点 |
---|---|---|---|
夜间光环境下颜色和屏幕亮度对视觉疲劳的影响[ | 2022年,TIAN等[ | 1. 利用了眼动仪和脑电图设备,可同时收集视觉疲劳的主观和客观指标,提高了研究的可信度和有效性 2. 设计了不同颜色和不同屏幕亮度的范式,可探究这些因素对视觉疲劳的影响,增加了研究的广泛性和实用性 3. 提出了一个新的指标,视觉抗疲劳指数,可为视觉疲劳的评估和预防提供一个量化的参考,有利于人眼保护 | 1. 只在黑暗环境中进行实验,未考虑其他光线条件对视觉疲劳的影响,降低了研究的普适性和代表性 2. 脑电信号受环境噪声、头皮电阻、电极位置等因素的影响,信号质量不稳定 |
VR中不同的游戏交互模式下的眼动特征和视觉疲劳评估[ | 2023年,FAN等[ | 1. 头戴式显示器内置的眼动仪能够提供实时的眼动参数信息,即时反馈个体的眼动状态。这为及时评估和干预视觉疲劳提供了便利 2. 使用了Visual Fatigue Questionnaire和SSQ问卷,优点是能够全面地捕捉到VR使用对人体的影响,可以更全面的提供使用VR时的身体反应和感受信息 | 1. 未进一步深入了解这2种交互模式下视觉疲劳的产生机制 2. 未进行实例验证,很难得出具体的结论或将研究结果应用于实际场景 |
驾驶舱灯光色温与视觉疲劳关系模拟试验研究[ | 2022年,孙瑞山等[ | 1. 通过在仿真驾驶舱内进行实验,研究者可以更好地控制实验环境,排除其他干扰因素对结果的影响 2. 该方法使用了主观视觉疲劳量表、视觉舒适度量表和闪光融合临界频率仪,对被试者的视觉舒适度和疲劳程度进行了多维度的连续测量。这有助于综合评估灯光色温对视觉疲劳的影响,提供更全面的结果 | 1. 闪光融合临界频率仪可能引起被试者的不适感和眩晕感,影响测量结果的准确性 2. 闪光融合临界频率仪与驾驶任务的复杂性、持续时间、难度等因素有交互作用,导致测量结果的变化 |
基于心电脉搏特征的视觉疲劳状态识别[ | 2011年,张爱华等[ | 1. 从生物医学信号角度检测和评估视觉疲劳,提供一种客观、有效和无创的方法 2. 心电图提供客观的生理指标,通过测量心率和心律的变化,可以间接反映出身体状况和压力水平。与主观评估方法相比,心电图测量可以减少个体主观认知的偏见,提供更客观的评估结果 | 1. 可能受到被试者的个体差异、情绪和环境等因素的影响 2. 缺乏特定指标:心电图测量提供的指标主要包括心率和心律的分析,这些指标不能直接反映眼部疲劳的程度 |
Table 1 Current status of visual fatigue assessment methods
研究点 | 方法 | 优点 | 缺点 |
---|---|---|---|
夜间光环境下颜色和屏幕亮度对视觉疲劳的影响[ | 2022年,TIAN等[ | 1. 利用了眼动仪和脑电图设备,可同时收集视觉疲劳的主观和客观指标,提高了研究的可信度和有效性 2. 设计了不同颜色和不同屏幕亮度的范式,可探究这些因素对视觉疲劳的影响,增加了研究的广泛性和实用性 3. 提出了一个新的指标,视觉抗疲劳指数,可为视觉疲劳的评估和预防提供一个量化的参考,有利于人眼保护 | 1. 只在黑暗环境中进行实验,未考虑其他光线条件对视觉疲劳的影响,降低了研究的普适性和代表性 2. 脑电信号受环境噪声、头皮电阻、电极位置等因素的影响,信号质量不稳定 |
VR中不同的游戏交互模式下的眼动特征和视觉疲劳评估[ | 2023年,FAN等[ | 1. 头戴式显示器内置的眼动仪能够提供实时的眼动参数信息,即时反馈个体的眼动状态。这为及时评估和干预视觉疲劳提供了便利 2. 使用了Visual Fatigue Questionnaire和SSQ问卷,优点是能够全面地捕捉到VR使用对人体的影响,可以更全面的提供使用VR时的身体反应和感受信息 | 1. 未进一步深入了解这2种交互模式下视觉疲劳的产生机制 2. 未进行实例验证,很难得出具体的结论或将研究结果应用于实际场景 |
驾驶舱灯光色温与视觉疲劳关系模拟试验研究[ | 2022年,孙瑞山等[ | 1. 通过在仿真驾驶舱内进行实验,研究者可以更好地控制实验环境,排除其他干扰因素对结果的影响 2. 该方法使用了主观视觉疲劳量表、视觉舒适度量表和闪光融合临界频率仪,对被试者的视觉舒适度和疲劳程度进行了多维度的连续测量。这有助于综合评估灯光色温对视觉疲劳的影响,提供更全面的结果 | 1. 闪光融合临界频率仪可能引起被试者的不适感和眩晕感,影响测量结果的准确性 2. 闪光融合临界频率仪与驾驶任务的复杂性、持续时间、难度等因素有交互作用,导致测量结果的变化 |
基于心电脉搏特征的视觉疲劳状态识别[ | 2011年,张爱华等[ | 1. 从生物医学信号角度检测和评估视觉疲劳,提供一种客观、有效和无创的方法 2. 心电图提供客观的生理指标,通过测量心率和心律的变化,可以间接反映出身体状况和压力水平。与主观评估方法相比,心电图测量可以减少个体主观认知的偏见,提供更客观的评估结果 | 1. 可能受到被试者的个体差异、情绪和环境等因素的影响 2. 缺乏特定指标:心电图测量提供的指标主要包括心率和心律的分析,这些指标不能直接反映眼部疲劳的程度 |
舒适度等级 | 视觉状态 | 舒适度评分/分评价结果 |
---|---|---|
1级 | 无不适感 | 1···很舒适 |
2级 | 无明显不适感 | 2···舒适 |
3级 | 有不适感 | 3···一般舒适 |
4级 | 明显不适 | 4···不舒适 |
5级 | 严重不适 | 5···很不舒适 |
Table 2 Rating and rules of visual comfort evaluation
舒适度等级 | 视觉状态 | 舒适度评分/分评价结果 |
---|---|---|
1级 | 无不适感 | 1···很舒适 |
2级 | 无明显不适感 | 2···舒适 |
3级 | 有不适感 | 3···一般舒适 |
4级 | 明显不适 | 4···不舒适 |
5级 | 严重不适 | 5···很不舒适 |
Fig. 9 Scatter plot of subjective ratings per minute for 25 participants ((a) Score of visual fatigue at 0.2 Hz and 1.0 Hz; (b) Score of visual fatigue at 0.4 Hz and 1.2 Hz; (c) Score of visual fatigue at 0.6 Hz and 1.4 Hz; (d) Score of visual fatigue at 0.8 Hz and 1.6 Hz)
眼动交互频率/ Hz | 瞳孔直径 变化率/% | 眨眼频率/ (次/分钟) |
---|---|---|
0.2 | -4.94~5.56 | 35 |
0.4 | -2.76~4.68 | 30 |
0.6 | -1.86~2.26 | 25 |
0.8 | -2.16~4.68 | 28 |
1.0 | -5.92~5.18 | 38 |
1.2 | -6.37~2.99 | 40 |
1.4 | -8.61~7.61 | 54 |
1.6 | -8.77~8.51 | 57 |
Table 3 Eye movement data at different frequencies
眼动交互频率/ Hz | 瞳孔直径 变化率/% | 眨眼频率/ (次/分钟) |
---|---|---|
0.2 | -4.94~5.56 | 35 |
0.4 | -2.76~4.68 | 30 |
0.6 | -1.86~2.26 | 25 |
0.8 | -2.16~4.68 | 28 |
1.0 | -5.92~5.18 | 38 |
1.2 | -6.37~2.99 | 40 |
1.4 | -8.61~7.61 | 54 |
1.6 | -8.77~8.51 | 57 |
Fig. 12 Scatter plot of the relationship between blink rate and subjective ratings of 25 participants ((a) Score of visual fatigue at 0.2 Hz and 1.0 Hz; (b) Score of visual fatigue at 0.4 Hz and 1.2 Hz; (c) Score of visual fatigue at 0.6 Hz and 1.4 Hz; (d) Score of visual fatigue at 0.8 Hz and 1.6 Hz)
方程 | R2 | F | 常量 | b1 | b2 |
---|---|---|---|---|---|
线性 | 0.970 | 327.392 | -0.050 | 0.081 | 0 |
二次 | 0.985 | 259.853 | -1.184 | 0.146 | -0.001 |
三次 | 0.983 | 179.529 | -3.063 | 0.309 | -0.005 |
指数 | 0.875 | 69.985 | 0.924 | 0.029 | 0 |
Table 4 Fitting results of different functions
方程 | R2 | F | 常量 | b1 | b2 |
---|---|---|---|---|---|
线性 | 0.970 | 327.392 | -0.050 | 0.081 | 0 |
二次 | 0.985 | 259.853 | -1.184 | 0.146 | -0.001 |
三次 | 0.983 | 179.529 | -3.063 | 0.309 | -0.005 |
指数 | 0.875 | 69.985 | 0.924 | 0.029 | 0 |
舒适度等级 | 视觉状态 | 眨眼频率临界值 |
---|---|---|
1级 | 无不适感 | 19 |
2级 | 无明显不适感 | 25 |
3级 | 有不适感 | 33 |
4级 | 明显不适 | 45 |
5级 | 严重不适 | 52 |
Table 5 Critical values of clustering results at different levels
舒适度等级 | 视觉状态 | 眨眼频率临界值 |
---|---|---|
1级 | 无不适感 | 19 |
2级 | 无明显不适感 | 25 |
3级 | 有不适感 | 33 |
4级 | 明显不适 | 45 |
5级 | 严重不适 | 52 |
Fig. 14 Blink frequency with Mann Whitney U test ((a) Blink frequency box plot; (b) Mann Whitney U test chart (Ns: No significant difference; *: Represents a significant difference (p<0.05); **: Represents a more significant difference (p<0.01); ***: Represents a very significant difference (p<0.001)))
Fig. 16 Disassembly diagram of the experiment ((a) Initial state; (b) Highlight object for demolition; (c) Object overlap and disappear from view; (d) Next object for demolition highlighted)
编号 | 性别 | 年龄/ 岁 | 身高/ cm | 体重/ kg | 视力 | 身心 状态 |
---|---|---|---|---|---|---|
A | 男 | 33 | 174 | 68.6 | 4.6 | 正常 |
B | 男 | 30 | 176 | 67.3 | 4.8 | 正常 |
C | 男 | 28 | 171 | 71.4 | 4.6 | 正常 |
D | 男 | 35 | 172 | 65.6 | 4.6 | 正常 |
E | 女 | 28 | 162 | 53.2 | 4.8 | 正常 |
F | 女 | 30 | 158 | 51.3 | 4.4 | 正常 |
G | 男 | 26 | 168 | 64.2 | 4.5 | 正常 |
Table 6 Conditions of experimental personnel
编号 | 性别 | 年龄/ 岁 | 身高/ cm | 体重/ kg | 视力 | 身心 状态 |
---|---|---|---|---|---|---|
A | 男 | 33 | 174 | 68.6 | 4.6 | 正常 |
B | 男 | 30 | 176 | 67.3 | 4.8 | 正常 |
C | 男 | 28 | 171 | 71.4 | 4.6 | 正常 |
D | 男 | 35 | 172 | 65.6 | 4.6 | 正常 |
E | 女 | 28 | 162 | 53.2 | 4.8 | 正常 |
F | 女 | 30 | 158 | 51.3 | 4.4 | 正常 |
G | 男 | 26 | 168 | 64.2 | 4.5 | 正常 |
编号 | 眼动交互 频率/Hz | 眨眼频率/ (次/分钟) | 舒适度评分/分数 | 误差/ % | |
---|---|---|---|---|---|
主观 | 模型 | ||||
A | 0.2 | 42 | 3 | 3.184 | 5.77 |
B | 0.6 | 26 | 2 | 1.936 | 3.30 |
C | 0.8 | 28 | 2 | 2.120 | 5.66 |
D | 1.4 | 59 | 4 | 3.949 | 1.29 |
E | 0.2 | 40 | 3 | 3.056 | 1.83 |
F | 0.6 | 28 | 2 | 2.120 | 5.66 |
G | 0.8 | 38 | 3 | 2.920 | 2.73 |
B | 0.4 | 27 | 2 | 2.029 | 1.42 |
B | 1.0 | 40 | 3 | 3.056 | 1.83 |
D | 1.0 | 37 | 3 | 2.849 | 5.30 |
D | 1.2 | 42 | 3 | 3.184 | 5.77 |
E | 1.2 | 57 | 4 | 3.889 | 2.85 |
E | 0.4 | 38 | 3 | 2.920 | 2.73 |
Table 7 Results of confirmatory experiments
编号 | 眼动交互 频率/Hz | 眨眼频率/ (次/分钟) | 舒适度评分/分数 | 误差/ % | |
---|---|---|---|---|---|
主观 | 模型 | ||||
A | 0.2 | 42 | 3 | 3.184 | 5.77 |
B | 0.6 | 26 | 2 | 1.936 | 3.30 |
C | 0.8 | 28 | 2 | 2.120 | 5.66 |
D | 1.4 | 59 | 4 | 3.949 | 1.29 |
E | 0.2 | 40 | 3 | 3.056 | 1.83 |
F | 0.6 | 28 | 2 | 2.120 | 5.66 |
G | 0.8 | 38 | 3 | 2.920 | 2.73 |
B | 0.4 | 27 | 2 | 2.029 | 1.42 |
B | 1.0 | 40 | 3 | 3.056 | 1.83 |
D | 1.0 | 37 | 3 | 2.849 | 5.30 |
D | 1.2 | 42 | 3 | 3.184 | 5.77 |
E | 1.2 | 57 | 4 | 3.889 | 2.85 |
E | 0.4 | 38 | 3 | 2.920 | 2.73 |
[1] | ZHANG X B, LIU X L, YUAN S M, et al. Eye tracking based control system for natural human-computer interaction[EB/OL]. [2023-01-23]. https://www.hindawi.com/journals/cin/2017/5739301/. |
[2] | PLOPSKI A, HIRZLE T, NOROUZI N, et al. The eye in extended reality: a survey on gaze interaction and eye tracking in head-worn extended reality[J]. ACM Computing Surveys, 2022, 55(3): 1-39. |
[3] | GUO J E, WENG D D, ZHANG Z L, et al. Subjective and objective evaluation of visual fatigue caused by continuous and discontinuous use of HMDs[J]. Journal of the Society for Information Display, 2019, 27(2): 108-119. |
[4] | WANG Y, ZHAI G T, CHEN S C, et al. Assessment of eye fatigue caused by head-mounted displays using eye-tracking[J]. Biomedical Engineering Online, 2019, 18: 1-19. |
[5] | JACOBS J, WANG X, ALEXA M. Keep it simple: depth-based dynamic adjustment of rendering for head-mounted displays decreases visual comfort[J]. ACM Transactions on Applied Perception, 2019, 16(3): 1-16. |
[6] | FAN L, WANG J J, LI Q, et al. Eye movement characteristics and visual fatigue assessment of virtual reality games with different interaction modes[J]. Frontiers in Neuroscience, 2023, 17: 1173127. |
[7] |
HIROTA M, KANDA H, ENDO T, et al. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation[J]. Ergonomics, 2019, 62(6): 759-766.
DOI PMID |
[8] | LI X J, LING J X, SHEN Y. Visual fatigue relief zone in an extra-long tunnel using virtual reality with wearable EEG-based devices[J]. Journal of Central South University, 2021, 28(12): 3871-3881. |
[9] | 姜颖, 洪军, 王崴, 等. 面向VDT显示界面的视觉舒适度客观描述方法[J]. 中南大学学报: 自然科学版, 2017, 48(1): 77-83. |
JIANG Y, HONG J, WANG W, et al. An objective description method of visual comfort for VDT display interface[J]. Journal of Central South University: Science and Technology, 2017, 48(1): 77-83 (in Chinese). | |
[10] | TIAN P Y, XU G H, HAN C C, et al. Effects of paradigm color and screen brightness on visual fatigue in light environment of night based on eye tracker and EEG acquisition equipment[J]. Sensors, 2022, 22(11): 4082. |
[11] | 胡淑燕, 郑钢铁. 应用支持向量机的眼睑参数疲劳预测[J]. 北京航空航天大学学报, 2009, 35(8): 929-932. |
HU S Y, ZHENG G T. Driver fatigue prediction with eyelid related parameters by support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 929-932 (in Chinese). | |
[12] | SONG M C, LI L N, GUO J T, et al. A new method for muscular visual fatigue detection using electrooculogram[J]. Biomedical Signal Processing and Control, 2020, 58: 101865. |
[13] | 孙瑞山, 张尧, 孙军亚. 驾驶舱灯光色温与视觉疲劳关系模拟试验研究[J]. 安全与环境学报, 2022, 22(2): 785-791. |
SUN R S, ZHANG Y, SUN J Y. Simulation experiment research on the relationship between light color temperature and visual fatigue in the cockpit[J]. Journal of Safety and Environment, 2022, 22(2): 785-791 (in Chinese). | |
[14] |
张爱华, 赵治月, 杨华. 基于心电脉搏特征的视觉疲劳状态识别[J]. 计算机工程, 2011, 37(7): 279-281.
DOI |
ZHANG A H, ZHAO Z Y, YANG H. Visual fatigue state recognition based on ECG pulse feature[J]. Computer Engineering, 2011, 37(7): 279-281 (in Chinese). | |
[15] | SOUCHET A D, PHILIPPE S, LOURDEAUX D, et al. Measuring visual fatigue and cognitive load via eye tracking while learning with virtual reality head-mounted displays: a review[J]. International Journal of Human-Computer Interaction, 2022, 38(9): 801-824. |
[16] | ISKANDER J, HOSSNY M. Measuring the likelihood of VR visual fatigue through ocular biomechanics[J]. Displays, 2021, 70: 102105. |
[17] | SOUCHET A D, LOURDEAUX D, PAGANI A, et al. A narrative review of immersive virtual reality’s ergonomics and risks at the workplace: cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload[J]. Virtual Reality, 2023, 27(1): 19-50. |
[18] | 徐明伟, 金龙哲, 田兴华, 等. 受限空间不同照度环境下VDT作业视觉疲劳[J]. 工程科学学报, 2020, 42(12): 1605-1612. |
XU M W, JIN L Z, TIAN X H, et al. Visual fatigue of VDT operation under different illumination conditions in confined space[J]. Chinese Journal of Engineering, 2020, 42(12): 1605-1612 (in Chinese). | |
[19] | 田会娟, 关涛, 蔡敏鹏, 等. 基于瞳孔直径的VDT视觉舒适度评价方法研究[J]. 激光与光电子学进展, 2020, 57(15): 300-306. |
TIAN H J, GUAN T, CAI M P, et al. Evaluation model of VDT visual comfort based on pupil diameter[J]. Laser & Optoelectronics Progress, 2020, 57(15): 300-306 (in Chinese). | |
[20] | 牛清宁, 周志强, 金立生, 等. 基于眼动特征的疲劳驾驶检测方法[J]. 哈尔滨工程大学学报, 2015, 36(3): 394-398. |
NIU Q N, ZHOU Z Q, JIN L S, et al. Detection of driver fatigue based on eye movements[J]. Journal of Harbin Engineering University, 2015, 36(3): 394-398 (in Chinese). | |
[21] | ISKANDER J, HOSSNY M, NAHAVANDI S. A review on ocular biomechanic models for assessing visual fatigue in virtual reality[J]. IEEE Access, 2018, 6: 19345-19361. |
[1] | WANG Haomiao, SANG Shengju, DUAN Xiaodong, ZHANG Weihua, TAO Tiwei, MA Ting. Collaborative 3D modeling technique in virtual reality [J]. Journal of Graphics, 2024, 45(1): 169-182. |
[2] | XIE Hong-xia, HU Yu-ning, ZHANG Yun, WANG Ya-qi, DU Hui, QIN Ai-hong. Survey of methods for scene analysis and content processing in panoramic images and videos [J]. Journal of Graphics, 2023, 44(4): 640-657. |
[3] | TANG Peng, SA Guo-dong, LIU Zhen-yu, TAN Jian-rong. Design of digital twin system for forging hydraulic press [J]. Journal of Graphics, 2023, 44(3): 609-615. |
[4] | ZHU Yong-ning , GE Ting , DU Sheng-yu , LOU Ze-ru , WANG Jian-min. A usability study of panoramic fluid painting system in immersive virtual environments [J]. Journal of Graphics, 2021, 42(5): 833-840. |
[5] | ZHAO Jian-jun, HUANG Jun-peng, CHEN Jun-liang . Human-computer interaction method in previz based on Leap Motion [J]. Journal of Graphics, 2021, 42(1): 71-78. |
[6] | ZHENG Ming-yu, LI Jia-he, ZHANG Han, LUO Yan-lin, SHEN Jia-li, ZHU Xiao-ming . Immersive physics learning environment with force feedback [J]. Journal of Graphics, 2021, 42(1): 79-86. |
[7] | TENG Jian, HUANG Jia-hui, GONG Kai . Design of virtual reality simulated driving teaching system based on BCI [J]. Journal of Graphics, 2020, 41(2): 217-223. |
[8] | QIU Yuan-hang1, SUN Xian-bo1, LIU Yong-di1, CAI Zheng-qing1, XU Hong-yong2 . Development and application of virtual reality software for the practical teaching of sewage treatment plant [J]. Journal of Graphics, 2020, 41(2): 233-236. |
[9] | LIN Ying-ying, CAI Rui-fan, ZHU Yu-zhen, TANG Xiang-jun, JIN Xiao-gang. Virtual reality pottery modeling system based on leap motion [J]. Journal of Graphics, 2020, 41(1): 57-65. |
[10] | LI Xiang1,2, WANG Xue-wen1,2, XIE Jia-cheng1,2, QIAO Chun-guang1,2 YANG Zhao-jian1,2 . Research on Key Technologies of Virtual Operation of Mining Equipment Under Complex Conditions [J]. Journal of Graphics, 2019, 40(2): 403-409. |
[11] | JIANG Lijun1,2, LI Jianyu1, LI Zhelin1,2, WU Zhanghong1, ZHANG Yu1. Experience Measurement of Three Navigation Interfaces in Virtual Riding [J]. Journal of Graphics, 2018, 39(3): 515-521. |
[12] | FENG Guizhen1, CHI Jianbin1, XING Haijun1, ZHANG Zengqiang1, JIA Shuang2. Reducer Virtual Disassembly and Assembly Experiment Based on Unity3D [J]. Journal of Graphics, 2018, 39(2): 304-308. |
[13] | SUN Hui, LV Jian, CUN Wenzhe. VR System Information Visualization Model Cognition [J]. Journal of Graphics, 2018, 39(2): 317-326. |
[14] | ZHU Xiaoqiang1,2, ZHOU Hao1,2, SONG Lei1,2. Tree Crown LOD Modeling Based on α-Shape [J]. Journal of Graphics, 2017, 38(3): 303-313. |
[15] | Liu Wei, Du Qiang, Zhang Shunxin, Zhang Jianjun. Mobile Learning System of Engineering Graphics Based on VR Technology [J]. Journal of Graphics, 2016, 37(6): 857-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||