Journal of Graphics ›› 2024, Vol. 45 ›› Issue (6): 1338-1348.DOI: 10.11996/JG.j.2095-302X.2024061338
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
LUAN Shuai1(), WU Jian1, FAN Runze1, WANG Lili1,2(
)
Received:
2024-06-05
Accepted:
2024-09-01
Online:
2024-12-31
Published:
2024-12-24
Contact:
WANG Lili
About author:
First author contact:LUAN Shuai (2000-), master student. His main research interests cover virtual reality, augmented reality and HCI. E-mail:luanshuai@buaa.edu.cn
Supported by:
CLC Number:
LUAN Shuai, WU Jian, FAN Runze, WANG Lili. Observation quality field based collaborative object manipulation in VR[J]. Journal of Graphics, 2024, 45(6): 1338-1348.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024061338
Fig. 2 Pipeline of the preliminary construction of OQF ((a) The top view of scene; (b) The walkable area WA; (c) The top-down view of the sampling viewpoints in the scene, with blue spheres representing the sampling viewpoints)
Fig. 3 Third-person view of the scene and the view from a specific sampling point ((a) A third view of scene; (b) A view of viewpoint A in SV, the blue balls are the sampled viewpoints)
Fig. 4 Illustration of OQF Viewpoint Optimization ((a) Delete viewpoint that do not meet the conditions (red ball); (b) Delete viewpoint that do not meet the conditions (black ball); (c) The final result of OQF viewpoints)
Fig. 5 OQF visualization ((a) Viewpoints in the OQF are visualized as small spheres; (b) Viewpoints in the OQF are visualized as color squares; (c) A mini-map is added to give the global cues of OQF)
Fig. 6 Image pair comparison in the pilot user study (Columns 1-3 are for values of the T component of the OQF, columns 4-5 are for values of the RS component of OQF)
Fig. 7 Two users collaboratively manipulate the bunny (cyan) to the target (green) position according to the cues of the manipulation guidance field ((a) and (b) Show the colors of the squares on the floor visualize the values of the T and RS components of the manipulation guidance field; (c) and (e) Show the user views when user T stands on the locations of the different squares (green circles indicate teleportation); (d) and (f) Show the user views when user RS stands on the locations of the different squares)
Fig. 8 The second scene S2 of our user study ((a) and (b) Show two participants manipulating Maitreya to a green target position guided by their respective little balls with a map of OQF; (c) and (d) Show views seen from two viewpoints of two participants)
Fig. 9 The third scene S3 of our user study ((a) and (b) Show two participants manipulating blue pipe to a green target position guided by their respective color squares with map of OQF; (c) and (d) Show views seen from two viewpoints of two participants)
任务 | 条件 | 时间/s | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 144.25±47.36 | ||||
EC1 | 84.78±16.82 | 70.2 | <0.001* | 1.67 | 非常大 | |
EC2 | 130.90±31.12 | 10.2 | 0.311 | 0.33 | 小 | |
EC3 | 72.23±22.16 | 99.7 | <0.001* | 1.95 | 非常大 | |
EC4 | 88.70±22.16 | 62.6 | <0.001* | 1.48 | 非常大 | |
EC5 | 74.05±17.54 | 94.8 | <0.001* | 1.97 | 非常大 | |
S2 | CC | 114.90±32.51 | ||||
EC1 | 95.30±24.49 | 20.6 | 0.042* | 0.68 | 中等 | |
EC2 | 102.90±23.77 | 11.7 | 0.202 | 0.42 | 小 | |
EC3 | 84.75±24.82 | 35.6 | 0.002* | 1.04 | 大 | |
EC4 | 89.30±36.13 | 28.7 | 0.027* | 0.74 | 中等 | |
EC5 | 74.85±27.47 | 53.5 | <0.001* | 1.33 | 非常大 | |
S3 | CC | 135.75±50.75 | ||||
EC1 | 106.65±29.51 | 27.3 | 0.037* | 0.70 | 中等 | |
EC2 | 154.70±42.13 | -12.2 | 0.218 | 0.41 | 小 | |
EC3 | 93.70±23.30 | 44.9 | 0.002* | 1.06 | 大 | |
EC4 | 98.15±28.36 | 38.3 | 0.007* | 0.91 | 大 | |
EC5 | 86.50±22.66 | 56.9 | 0.007* | 1.25 | 非常大 |
Table 1 The completion time
任务 | 条件 | 时间/s | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 144.25±47.36 | ||||
EC1 | 84.78±16.82 | 70.2 | <0.001* | 1.67 | 非常大 | |
EC2 | 130.90±31.12 | 10.2 | 0.311 | 0.33 | 小 | |
EC3 | 72.23±22.16 | 99.7 | <0.001* | 1.95 | 非常大 | |
EC4 | 88.70±22.16 | 62.6 | <0.001* | 1.48 | 非常大 | |
EC5 | 74.05±17.54 | 94.8 | <0.001* | 1.97 | 非常大 | |
S2 | CC | 114.90±32.51 | ||||
EC1 | 95.30±24.49 | 20.6 | 0.042* | 0.68 | 中等 | |
EC2 | 102.90±23.77 | 11.7 | 0.202 | 0.42 | 小 | |
EC3 | 84.75±24.82 | 35.6 | 0.002* | 1.04 | 大 | |
EC4 | 89.30±36.13 | 28.7 | 0.027* | 0.74 | 中等 | |
EC5 | 74.85±27.47 | 53.5 | <0.001* | 1.33 | 非常大 | |
S3 | CC | 135.75±50.75 | ||||
EC1 | 106.65±29.51 | 27.3 | 0.037* | 0.70 | 中等 | |
EC2 | 154.70±42.13 | -12.2 | 0.218 | 0.41 | 小 | |
EC3 | 93.70±23.30 | 44.9 | 0.002* | 1.06 | 大 | |
EC4 | 98.15±28.36 | 38.3 | 0.007* | 0.91 | 大 | |
EC5 | 86.50±22.66 | 56.9 | 0.007* | 1.25 | 非常大 |
任务 | 条件 | 位置误差/mm | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 5.4±2.0 | ||||
EC1 | 3.0±1.4 | 80.4 | 0.001 6* | 1.36 | 非常大 | |
EC2 | 4.5±1.9 | 19.7 | 0.167 8 | 0.46 | 小 | |
EC3 | 3.7±1.2 | 47.2 | 0.002 7* | 1.04 | 大 | |
EC4 | 3.2±0.7 | 67.5 | <0.001 0* | 1.45 | 非常大 | |
EC5 | 3.1±0.7 | 75.9 | 0.001 6* | 1.36 | 非常大 | |
S2 | CC | 3.8±2.2 | ||||
EC1 | 2.2±0.9 | 74.6 | 0.003 5* | 0.98 | 大 | |
EC2 | 3.8±2.7 | 1.3 | 0.952 0 | 0.02 | 非常小 | |
EC3 | 2.5±1.4 | 52.6 | 0.031 0* | 0.73 | 中等 | |
EC4 | 2.5±1.3 | 49.6 | 0.036 7* | 0.70 | 中等 | |
EC5 | 2.1±1.1 | 82.9 | 0.003 6* | 1.01 | 大 | |
S3 | CC | 3.6±1.2 | ||||
EC1 | 2.9±1.5 | 22.8 | 0.141 0 | 0.49 | 小 | |
EC2 | 3.2±1.7 | 11.3 | 0.460 0 | 0.24 | 小 | |
EC3 | 2.2±1.0 | 62.6 | 0.000 6* | 1.21 | 非常大 | |
EC4 | 3.1±1.5 | 26.9 | 0.0714 | 0.60 | 中等 | |
EC5 | 2.3±1.0 | 57.9 | 0.0007* | 1.19 | 大 |
Table 2 The position error
任务 | 条件 | 位置误差/mm | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 5.4±2.0 | ||||
EC1 | 3.0±1.4 | 80.4 | 0.001 6* | 1.36 | 非常大 | |
EC2 | 4.5±1.9 | 19.7 | 0.167 8 | 0.46 | 小 | |
EC3 | 3.7±1.2 | 47.2 | 0.002 7* | 1.04 | 大 | |
EC4 | 3.2±0.7 | 67.5 | <0.001 0* | 1.45 | 非常大 | |
EC5 | 3.1±0.7 | 75.9 | 0.001 6* | 1.36 | 非常大 | |
S2 | CC | 3.8±2.2 | ||||
EC1 | 2.2±0.9 | 74.6 | 0.003 5* | 0.98 | 大 | |
EC2 | 3.8±2.7 | 1.3 | 0.952 0 | 0.02 | 非常小 | |
EC3 | 2.5±1.4 | 52.6 | 0.031 0* | 0.73 | 中等 | |
EC4 | 2.5±1.3 | 49.6 | 0.036 7* | 0.70 | 中等 | |
EC5 | 2.1±1.1 | 82.9 | 0.003 6* | 1.01 | 大 | |
S3 | CC | 3.6±1.2 | ||||
EC1 | 2.9±1.5 | 22.8 | 0.141 0 | 0.49 | 小 | |
EC2 | 3.2±1.7 | 11.3 | 0.460 0 | 0.24 | 小 | |
EC3 | 2.2±1.0 | 62.6 | 0.000 6* | 1.21 | 非常大 | |
EC4 | 3.1±1.5 | 26.9 | 0.0714 | 0.60 | 中等 | |
EC5 | 2.3±1.0 | 57.9 | 0.0007* | 1.19 | 大 |
任务 | 条件 | 旋转误差/mm | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 5.52±3.48 | ||||
EC1 | 3.62±0.67 | 52.6 | 0.024 6* | 0.76 | 大 | |
EC2 | 4.19±0.97 | 31.9 | 0.115 0 | 0.52 | 中等 | |
EC3 | 3.22±1.42 | 71.4 | 0.011 1* | 0.87 | 大 | |
EC4 | 3.29±1.11 | 68.0 | 0.011 2* | 0.86 | 大 | |
EC5 | 3.15±1.34 | 75.3 | 0.008 0* | 0.90 | 大 | |
S2 | CC | 6.12±2.56 | ||||
EC1 | 3.79±0.75 | 61.6 | 0.000 4* | 1.24 | 非常大 | |
EC2 | 3.84±0.90 | 59.2 | 0.070 0 | 0.39 | 小 | |
EC3 | 3.18±1.11 | 92.3 | <0.000 1* | 1.49 | 非常大 | |
EC4 | 3.69±1.48 | 66.0 | 0.000 9* | 1.16 | 大 | |
EC5 | 3.02±1.25 | 102.8 | <0.000 1* | 1.54 | 非常大 | |
S3 | CC | 4.20±1.92 | ||||
EC1 | 2.50±0.97 | 68.4 | 0.001 3* | 1.12 | 大 | |
EC2 | 3.26±0.98 | 29.4 | 0.062 0 | 0.62 | 中等 | |
EC3 | 2.32±1.14 | 80.8 | 0.000 7* | 1.19 | 大 | |
EC4 | 2.54±1.39 | 80.0 | 0.003 9* | 0.86 | 大 | |
EC5 | 2.12±1.30 | 97.9 | 0.000 3* | 1.29 | 非常大 |
Table 3 The rotation error
任务 | 条件 | 旋转误差/mm | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 5.52±3.48 | ||||
EC1 | 3.62±0.67 | 52.6 | 0.024 6* | 0.76 | 大 | |
EC2 | 4.19±0.97 | 31.9 | 0.115 0 | 0.52 | 中等 | |
EC3 | 3.22±1.42 | 71.4 | 0.011 1* | 0.87 | 大 | |
EC4 | 3.29±1.11 | 68.0 | 0.011 2* | 0.86 | 大 | |
EC5 | 3.15±1.34 | 75.3 | 0.008 0* | 0.90 | 大 | |
S2 | CC | 6.12±2.56 | ||||
EC1 | 3.79±0.75 | 61.6 | 0.000 4* | 1.24 | 非常大 | |
EC2 | 3.84±0.90 | 59.2 | 0.070 0 | 0.39 | 小 | |
EC3 | 3.18±1.11 | 92.3 | <0.000 1* | 1.49 | 非常大 | |
EC4 | 3.69±1.48 | 66.0 | 0.000 9* | 1.16 | 大 | |
EC5 | 3.02±1.25 | 102.8 | <0.000 1* | 1.54 | 非常大 | |
S3 | CC | 4.20±1.92 | ||||
EC1 | 2.50±0.97 | 68.4 | 0.001 3* | 1.12 | 大 | |
EC2 | 3.26±0.98 | 29.4 | 0.062 0 | 0.62 | 中等 | |
EC3 | 2.32±1.14 | 80.8 | 0.000 7* | 1.19 | 大 | |
EC4 | 2.54±1.39 | 80.0 | 0.003 9* | 0.86 | 大 | |
EC5 | 2.12±1.30 | 97.9 | 0.000 3* | 1.29 | 非常大 |
任务 | 条件 | 尺度误差/倍 | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 0.020±0.010 | ||||
EC1 | 0.014±0.013 | 49.9 | 0.275 | 0.73 | 中等 | |
EC2 | 0.020±0.013 | 0.5 | 0.982 | 0.01 | 非常小 | |
EC3 | 0.013±0.012 | 54.9 | 0.138 | 0.63 | 中等 | |
EC4 | 0.013±0.007 | 54.9 | 0.090 | 0.63 | 中等 | |
EC5 | 0.011±0.007 | 70.4 | 0.090 | 0.74 | 中等 | |
S2 | CC | 0.033±0.018 | ||||
EC1 | 0.030±0.018 | 8.9 | 0.654 | 0.15 | 非常小 | |
EC2 | 0.029±0.010 | 13.8 | 0.410 | 0.27 | 非常小 | |
EC3 | 0.032±0.022 | 1.5 | 0.948 | 0.02 | 非常小 | |
EC4 | 0.025±0.006 | 28.7 | 0.104 | 0.63 | 中等 | |
EC5 | 0.030±0.022 | 7.2 | 0.743 | 0.11 | 非常小 | |
S3 | CC | 0.012±0.007 | ||||
EC1 | 0.011±0.007 | 2.9 | 0.886 | 0.10 | 非常小 | |
EC2 | 0.012±0.007 | 0.1 | 0.956 | 0.01 | 非常小 | |
EC3 | 0.010±0.005 | 18.6 | 0.441 | 0.29 | 小 | |
EC4 | 0.011±0.004 | 2.9 | 0.805 | 0.05 | 非常小 | |
EC5 | 0.011±0.010 | 7.0 | 0.769 | 0.10 | 非常小 |
Table 4 The scale error
任务 | 条件 | 尺度误差/倍 | [(CCi-EC)/CCi]/% | p | d | 效果 |
---|---|---|---|---|---|---|
S1 | CC | 0.020±0.010 | ||||
EC1 | 0.014±0.013 | 49.9 | 0.275 | 0.73 | 中等 | |
EC2 | 0.020±0.013 | 0.5 | 0.982 | 0.01 | 非常小 | |
EC3 | 0.013±0.012 | 54.9 | 0.138 | 0.63 | 中等 | |
EC4 | 0.013±0.007 | 54.9 | 0.090 | 0.63 | 中等 | |
EC5 | 0.011±0.007 | 70.4 | 0.090 | 0.74 | 中等 | |
S2 | CC | 0.033±0.018 | ||||
EC1 | 0.030±0.018 | 8.9 | 0.654 | 0.15 | 非常小 | |
EC2 | 0.029±0.010 | 13.8 | 0.410 | 0.27 | 非常小 | |
EC3 | 0.032±0.022 | 1.5 | 0.948 | 0.02 | 非常小 | |
EC4 | 0.025±0.006 | 28.7 | 0.104 | 0.63 | 中等 | |
EC5 | 0.030±0.022 | 7.2 | 0.743 | 0.11 | 非常小 | |
S3 | CC | 0.012±0.007 | ||||
EC1 | 0.011±0.007 | 2.9 | 0.886 | 0.10 | 非常小 | |
EC2 | 0.012±0.007 | 0.1 | 0.956 | 0.01 | 非常小 | |
EC3 | 0.010±0.005 | 18.6 | 0.441 | 0.29 | 小 | |
EC4 | 0.011±0.004 | 2.9 | 0.805 | 0.05 | 非常小 | |
EC5 | 0.011±0.010 | 7.0 | 0.769 | 0.10 | 非常小 |
[1] | BOWMAN D A, KRUIJFF E, LAVIOLA J J, et al. 3D user interfaces: theory and practice[M]. Boston: Addison-Wesley, 2005: 117-118. |
[2] | BOWMAN D A, HODGES L F. An evaluation of techniques for grabbing and manipulating remote objects in immersive virtual environments[C]// 1997 Symposium on Interactive 3D Graphics. New York: ACM, 1997: 35-38. |
[3] | GLOUMEAU P C, STUERZLINGER W, HAN J. PinNPivot: object manipulation using pins in immersive virtual environments[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(4): 2488-2494. |
[4] | NGUYEN T T H, DUVAL T, PONTONNIER C. A new direct manipulation technique for immersive 3D virtual environments[C]// The 24th International Conference on Artificial Reality and Telexistence and the 19th Eurographics Symposium on Virtual Environments. Goslar: Eurographics Association, 2014: 67-74. |
[5] | WANG R, PARIS S, POPOVIĆ J. 6D hands: markerless hand-tracking for computer aided design[C]// The 24th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2011: 549-558. |
[6] | GRUDIN J, RUDDLE R A, SAVAGE J C D, et al. Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments[J]. ACM Transactions on Computer-Human Interaction, 2002, 9(4): 285-308. |
[7] | GRANDI J G, DEBARBA H G, MACIEL A. Characterizing asymmetric collaborative interactions in virtual and augmented realities[C]// 2019 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2019: 127-135. |
[8] | DUVAL T, LECUYER A, THOMAS S. SkeweR: a 3D interaction technique for 2-user collaborative manipulation of objects in virtual environments[C]// 3D User Interfaces. New York: IEEE Press, 2006: 69-72. |
[9] | BARON N. CollaborativeConstraint: UI for collaborative 3D manipulation operations[C]// 2016 IEEE Symposium on 3D User Interfaces. New York: IEEE Press, 2016: 273-274. |
[10] | WANG L L, LIU X L, LI X Y. VR collaborative object manipulation based on viewpoint quality[C]// 2021 IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2021: 60-68. |
[11] | LE CHENECHAL M, LACOCHE J, ROYAN J, et al. When the giant meets the ant an asymmetric approach for collaborative and concurrent object manipulation in a multi-scale environment[C]// 2016 IEEE Third VR International Workshop on Collaborative Virtual Environments. New York: IEEE Press, 2016: 18-22. |
[12] | SOARES L P, KOPPER R, PINHO M S. EGO-EXO: a cooperative manipulation technique with automatic viewpoint control[C]// 2018 20th Symposium on Virtual and Augmented Reality. New York: IEEE Press, 2018: 82-88. |
[13] | LAGES W. Ray, camera, action! A technique for collaborative 3D manipulation[C]// 2016 IEEE Symposium on 3D User Interfaces. New York: IEEE Press, 2016: 281-282. |
[14] | BACHMANN E R, HODGSON E, HOFFBAUER C, et al. Multi-user redirected walking and resetting using artificial potential fields[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(5): 2022-2031. |
[15] | DONG T Y, CHEN X W, SONG Y F, et al. Dynamic artificial potential fields for multi-user redirected walking[C]// 2020 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2020: 146-154. |
[16] | BOZGEYIKLI E, RAIJ A, KATKOORI S, et al. Point & teleport locomotion technique for virtual reality[C]// 2016 Annual Symposium on Computer-Human Interaction in Play. New York: ACM, 2016: 205-216. |
[17] | FREES S, KESSLER G D, KAY E. PRISM interaction for enhancing control in immersive virtual environments[J]. ACM Transactions on Computer-Human Interaction, 2007, 14(1): 2:1-2:31. |
[18] | ZAGATA K, GULIJ J, HALIK Ł, et al. Mini-map for gamers who walk and teleport in a virtual stronghold[J]. ISPRS International Journal of Geo-Information, 2021, 10(2): 96:1-96:17. |
[19] | HART S G. NASA-task load index (NASA-TLX); 20 years later[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2006, 50(9): 904-908. |
[20] | HART S G, STAVELAND L E. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research[J]. Advances in Psychology, 1988, 52: 139-183. |
[21] | SHAPIRO S S, WILK M B. An analysis of variance test for normality (complete samples)[J]. Biometrika, 1965, 52(3/4): 591-611. |
[22] | MAUCHLY J W. Significance test for sphericity of a normal n-variate distribution[J]. The Annals of Mathematical Statistics, 1940, 11(2): 204-209. |
[23] | LIU X S. Statistical power analysis for the social and behavioral sciences[M]. New York: Routledge, 2013. |
[1] | YANG Haozhong, KONG Xiaoyu, GU Ruikun, WANG Miao. Research progress and trends in large model technologies for virtual reality [J]. Journal of Graphics, 2024, 45(6): 1117-1131. |
[2] | REN Yangfu, YU Ge, FU Yueyao, XU Senzhe, HE Yu, WANG Juhong, ZHANG Songhai. The impact of scenery and time on spatial orientation cognition in virtual reality [J]. Journal of Graphics, 2024, 45(6): 1349-1363. |
[3] | LI Xiangdong, XIA Hanfei, SHAN Yifei, YIN Kailin, GENG Weidong. Opportunities and challenges: automatic generation technologies for graphical user interfaces [J]. Journal of Graphics, 2024, 45(3): 409-421. |
[4] | YAN Jiahao, LV Jian, HOU Yukang, MO Xinzhu. Research on the influence of eye movement interaction frequency on visual fatigue in virtual reality [J]. Journal of Graphics, 2024, 45(3): 528-538. |
[5] | WANG Yanhui, LU Yuanjie, YI Wenqing, YU Tao, WAN Xu. Model based virtual and real integration technology for multi-machine collaborative validation testing [J]. Journal of Graphics, 2024, 45(2): 369-373. |
[6] | WANG Haomiao, SANG Shengju, DUAN Xiaodong, ZHANG Weihua, TAO Tiwei, MA Ting. Collaborative 3D modeling technique in virtual reality [J]. Journal of Graphics, 2024, 45(1): 169-182. |
[7] | XIE Hong-xia, HU Yu-ning, ZHANG Yun, WANG Ya-qi, DU Hui, QIN Ai-hong. Survey of methods for scene analysis and content processing in panoramic images and videos [J]. Journal of Graphics, 2023, 44(4): 640-657. |
[8] | GAO Yue, HAN Hong-lei. Audience screen display system based on light-emitting devices [J]. Journal of Graphics, 2023, 44(4): 784-793. |
[9] | TANG Peng, SA Guo-dong, LIU Zhen-yu, TAN Jian-rong. Design of digital twin system for forging hydraulic press [J]. Journal of Graphics, 2023, 44(3): 609-615. |
[10] | ZHU Yong-ning , GE Ting , DU Sheng-yu , LOU Ze-ru , WANG Jian-min. A usability study of panoramic fluid painting system in immersive virtual environments [J]. Journal of Graphics, 2021, 42(5): 833-840. |
[11] | LIU You-quan , WANG Yuan-chao , XU Kun , LIU Zheng-xiong , HUANG Pan-feng. Mixed reality based remote collaborative assembly guidance [J]. Journal of Graphics, 2021, 42(2): 216-221. |
[12] | ZHAO Jian-jun, HUANG Jun-peng, CHEN Jun-liang . Human-computer interaction method in previz based on Leap Motion [J]. Journal of Graphics, 2021, 42(1): 71-78. |
[13] | ZHENG Ming-yu, LI Jia-he, ZHANG Han, LUO Yan-lin, SHEN Jia-li, ZHU Xiao-ming . Immersive physics learning environment with force feedback [J]. Journal of Graphics, 2021, 42(1): 79-86. |
[14] | WANG Er-zhuo1, YUAN Xiang1, LI Shi-yan2. Proactive interaction design of conversational agent for smart homes [J]. Journal of Graphics, 2020, 41(4): 658-666. |
[15] | TENG Jian, HUANG Jia-hui, GONG Kai . Design of virtual reality simulated driving teaching system based on BCI [J]. Journal of Graphics, 2020, 41(2): 217-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||