Journal of Graphics ›› 2025, Vol. 46 ›› Issue (3): 520-531.DOI: 10.11996/JG.j.2095-302X.2025030520
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHANG Di1(), ZHANG Wenan1, JIANG Zhide1, WU Aixia1, KONG Hao1, GUO Xian1, CHEN Wei2(
)
Received:
2024-07-05
Accepted:
2024-12-13
Online:
2025-06-30
Published:
2025-06-13
Contact:
CHEN Wei
About author:
First author contact:ZHANG Di (1987-), associate professor, Ph.D. His main research interests cover data visualization, AIGC application. E-mail:zhangdi.cuc@gmail.com
Supported by:
CLC Number:
ZHANG Di, ZHANG Wenan, JIANG Zhide, WU Aixia, KONG Hao, GUO Xian, CHEN Wei. TCPColor: a Chinese painting color scheme recommendation system based on text-to-image generation model[J]. Journal of Graphics, 2025, 46(3): 520-531.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025030520
特征类别 | 特征描述 | 标签举例 |
---|---|---|
主题 | 国画的画科 | 山水画、人物画、花鸟画 |
意境 | 画作在情感、氛围、思想、哲理等方面所展现出的深远意义 | 韶秀、沉雄、空灵等[ |
技法 | 画作中使用的具有代表性的技法 | 披麻皴、双勾法等 |
物象 | 画作中包含的物象 | 叶、鸟、花等 |
构图 | 画作的构图特点 | 之字形构图,两线构图等 |
赋彩 | 画作的用色方案 | 设色、水墨、白描等 |
Table 1 Rules of the Chinese painting annotation system
特征类别 | 特征描述 | 标签举例 |
---|---|---|
主题 | 国画的画科 | 山水画、人物画、花鸟画 |
意境 | 画作在情感、氛围、思想、哲理等方面所展现出的深远意义 | 韶秀、沉雄、空灵等[ |
技法 | 画作中使用的具有代表性的技法 | 披麻皴、双勾法等 |
物象 | 画作中包含的物象 | 叶、鸟、花等 |
构图 | 画作的构图特点 | 之字形构图,两线构图等 |
赋彩 | 画作的用色方案 | 设色、水墨、白描等 |
步骤 | 参数/技术 | 详细说明 |
---|---|---|
数据集构建 | 数据来源 | 故宫博物院开放数据专区 |
预处理步骤 | 去除图片背景,图片对应的标签集合并为描述语句 | |
模型微调参数设置 | 硬件设备 | 2台Nvidia 3090显卡 |
迭代次数 | 10个epoch | |
学习率 | 32 | |
精度 | fp16 (半精度) |
Table 2 Fine-tuning of the TGM model
步骤 | 参数/技术 | 详细说明 |
---|---|---|
数据集构建 | 数据来源 | 故宫博物院开放数据专区 |
预处理步骤 | 去除图片背景,图片对应的标签集合并为描述语句 | |
模型微调参数设置 | 硬件设备 | 2台Nvidia 3090显卡 |
迭代次数 | 10个epoch | |
学习率 | 32 | |
精度 | fp16 (半精度) |
Fig. 2 Comparison of generation results from different models using Chinese painting-related prompt words ((a) Flower and bird painting, bird, outline and wash technique; (b) Figure painting, maid, exquisite and divine; (c) Figure painting, monk; (d) Average score)
步骤 | 评价标准 | 完整处理 | 消融处理 |
---|---|---|---|
前景图像提取 | CR | 0.9 | 0.7 |
K-Means颜色聚类 | 用户满意度 | 3.9 | 2.7 |
国画标准色替代 | CH | 0.7 | 0.5 |
Table 3 Results of ablation study
步骤 | 评价标准 | 完整处理 | 消融处理 |
---|---|---|---|
前景图像提取 | CR | 0.9 | 0.7 |
K-Means颜色聚类 | 用户满意度 | 3.9 | 2.7 |
国画标准色替代 | CH | 0.7 | 0.5 |
Fig. 4 Objective color analysis of color schemes for various models ((a) Assessment of color differences; (b) Evaluation of similarity to traditional Chinese painting color schemes)
Fig. 7 Case 1: distilling the beauty of national colors-the design process of Chinese-style product packaging color schemes ((a) Case prompt words; (b) Overview of the painting; (c) Recommended color scheme; (d) Color effect diagram for packaging box)
Fig. 9 Case 3: recommending monochromatic schemes for Chinese painting ((a) Recommended color scheme for case 3; (b) Color effect diagram of fabric with cloud pattern)
[1] | 陈佳舟, 黄可妤, 封颖超杰, 等. 基于古代绘画的古诗自动生成方法[J]. 计算机辅助设计与图形学学报, 2021, 33(7): 1038-1044. |
CHEN J Z, HUANG K Y, FENG Y C J, et al. Automatic poetry generation based on ancient Chinese paintings[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(7): 1038-1044 (in Chinese). | |
[2] | LIANG K. Color performance of Chinese flower-and-bird fine brushwork[EB/OL]. [2024-05-05]https://www.atlantis-press.com/proceedings/icesame-16/25850996. |
[3] | TIAN Z X. Chinese style digital painting[D]. Menomonie: University of Wisconsin-Stout, 2017. |
[4] | YU T X, LIN C, ZHANG S J, et al. End-to-end partial convolutions neural networks for Dunhuang grottoes wall-painting restoration[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 1447-1455. |
[5] | XU L, PARK S J, LEE S. Color2Vec: web-based modeling of word-color association with sociocultural contexts[J]. ACM Transactions on Computer-Human Interaction, 2023, 30(4): 51. |
[6] | PERCHOULI AI. 中国色[EB/OL]. [2024-05-05]https://www.zhongguose.com/. |
PERCHOULI AI. Chinese colors[EB/OL]. [2024-05-05]https://www.zhongguose.com/. | |
[7] | MCCARTHY B, GIACCAI J. Scientific studies of pigments in Chinese paintings[M]. London: Archetype Publications, 2021: 158. |
[8] | LIZUN D, KURKIEWICZ T, SZCZUPAK B, et al. A multi-analytical investigation of Liu Kang’s colour palette and painting technique from the Shanghai period (1933-1937)[J]. Applied Sciences, 2023, 13(4): 2414. |
[9] | CHEN Y, YANG J, PAN Q Q, et al. A method for exploring word-colour associations[J]. Color Research & Application, 2020, 45(1): 85-94. |
[10] | HU J Y, HAN X, YI X Y, et al. Efficient cross-lingual transfer for Chinese stable diffusion with images as pivots[EB/OL]. [2024-05-05]https://arxiv.org/abs/2305.11540. |
[11] | O’DONOVAN P, AGARWALA A, HERTZMANN A. Color compatibility from large datasets[C]// ACM SIGGRAPH 2011 Papers. New York: ACM, 2011: 63. |
[12] | MUNSELL A H. A color notation[M]. New York: Munsell Color Co., 1919: 1-146. |
[13] | GRANVILLE W C. The color harmony manual, a color atlas based on the Ostwald color system[J]. Color Research & Application, 1994, 19(2): 77-98. |
[14] | KOBAYASHI S. The aim and method of the color image scale[J]. Color Research & Application, 1981, 6(2): 93-107. |
[15] | WANG W N, YU Y L. Image emotional semantic query based on color semantic description[C]// 2005 International Conference on Machine Learning and Cybernetics. New York: IEEE Press, 2005: 4571-4576. |
[16] | CHEN T W, CHEN Y L, CHIEN S Y. Fast image segmentation based on K-means clustering with histograms in HSV color space[C]// 2008 IEEE 10th Workshop on Multimedia Signal Processing. New York: IEEE Press, 2008: 322-325. |
[17] | DELON J, DESOLNEUX A, LISANI J L, et al. Automatic color palette[C]// IEEE International Conference on Image Processing 2005. New York: IEEE Press, 2005: II-706. |
[18] | ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 1597-1604. |
[19] | 刘静, 庄梅玲, 商蕾, 等. 基于色彩聚类的皮影服饰纹样分割[J]. 现代纺织技术, 2021, 29(5): 71-77. |
LIU J, ZHUANG M L, SHANG L, et al. Pattern segmentation of shadow puppetry costumes based on color clustering[J]. Advanced Textile Technology, 2021, 29(5): 71-77 (in Chinese). | |
[20] | PHAN H Q, FU H B, CHAN A B. Color orchestra: ordering color palettes for interpolation and prediction[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(6): 1942-1955. |
[21] | HAN J, LEE Y. Image sentiment considering color palette recommendations based on influence scores for image advertisement[J]. Electronic Commerce Research, 2024: 1-28. |
[22] | HONG Y, ZENG X Y, WANG Y Y, et al. CBCRS: an open case-based color recommendation system[J]. Knowledge- Based Systems, 2018, 141: 113-128. |
[23] | LEE H, ULLAH U, LEE J S, et al. A brief survey of text driven image generation and maniulation[C]// 2021 IEEE International Conference on Consumer Electronics-Asia. New York: IEEE Press, 2021: 1-4. |
[24] | ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10674-10685. |
[25] | RAMESH A, DHARIWAL P, NICHOL A, et al. Hierarchical text-conditional image generation with CLIP latents[EB/OL]. [2024-05-05]https://arxiv.org/abs/2204.06125. |
[26] | KO H K, PARK G, JEON H, et al. Large-scale text-to-image generation models for visual artists’ creative works[C]// The 28th International Conference on Intelligent User Interfaces. New York: ACM, 2023: 919-933. |
[27] | GAL R, ALALUF Y, ATZMON Y, et al. An image is worth one word: personalizing text-to-image generation using textual inversion[EB/OL]. [2024-05-05]https://arxiv.org/abs/2208.01618. |
[28] | RUIZ N, LI Y Z, JAMPANI V, et al. Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 22500-22510. |
[29] | ZHANG J X, GAN R Y, WANG J J, et al. Fengshenbang 1.0: being the foundation of Chinese cognitive intelligence[EB/OL]. [2024-05-05]https://arxiv.org/abs/2209.02970#. |
[30] | LIU V, CHILTON L B. Design guidelines for prompt engineering text-to-image generative models[C]// 2022 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2022: 384. |
[31] | XU H R, CHEN S Y, ZHANG Y. Magical brush: a symbol-based modern Chinese painting system for novices[C]// 2023 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2023: 131. |
[32] | National Palace Museum. Open data[EB/OL].[2024-05-05]https://digitalarchive.npm.gov.tw/.opendata. |
[33] | 吴功正. 我写《六朝美学史》[J]. 中国美术, 1995(5): 5-7. |
WU Q Z. I wrote history of aesthetics in the Six Dynasties[J]. Art in China, 1995(5):5-7. | |
[34] | LERTRUSDACHAKUL T, RUXPAITOON K, THIPTARAJAN K. Color palette extraction by using modified k-means clustering[C]// 2019 7th International Electrical Engineering Congress. New York: IEEE Press, 2019: 1-4. |
[35] | 邝智杰. 基于颜色和谐度的可计算图像美学评估关键技术研究与应用[D]. 北京: 北京邮电大学, 2015. |
KUANG Z J. Color harmony based computational a esthetics of image and its application[D]. Beijing: Beijing University of Posts and Telecommunications, 2015 (in Chinese). | |
[36] | INOUE K, JIANG M Y, HARA K. Hue-preserving saturation improvement in RGB color cube[J]. Journal of Imaging, 2021, 7(8): 150. |
[37] | ZHANG L M, LI C Z, SIMO-SERRA E, et al. User-guided line art flat filling with split filling mechanism[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 9884-9893. |
[1] | WANG Sijia, FENG Yingchaojie, ZHU Hang, ZHANG Wei, ZHU Lin, CHEN Wei. TCPVis: visual analysis system of traditional Chinese painting school based on six principles of Chinese painting [J]. Journal of Graphics, 2024, 45(1): 209-218. |
[2] | Li Jiangyong. Research of Color Scheme for Construction Machine Based on Brand Identity [J]. Journal of Graphics, 2014, 35(3): 423-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||