Journal of Graphics ›› 2025, Vol. 46 ›› Issue (5): 1144-1151.DOI: 10.11996/JG.j.2095-302X.2025051144
• Industrial Design • Previous Articles Next Articles
YU Kexiong(), HE Hongjun, YI Renjiao, ZHAO Hang, XU Kai, ZHU Chenyang(
)
Received:
2025-01-26
Accepted:
2025-03-13
Online:
2025-10-30
Published:
2025-09-10
Contact:
ZHU Chenyang
About author:
First author contact:YU Kexiong (2000-), master student. His main research interest covers machine learning for combinatorial optimization. E-mail:yukexiong18@nudt.edu.cn
Supported by:
CLC Number:
YU Kexiong, HE Hongjun, YI Renjiao, ZHAO Hang, XU Kai, ZHU Chenyang. Graph-based diffusion solver for basic job-shop scheduling problem[J]. Journal of Graphics, 2025, 46(5): 1144-1151.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025051144
Fig. 1 Disjunctive graph representation of Job-shop Scheduling Problems ((a) One JSSP instance of size 3×3; (b) A feasible solution; (c) The critical path of the feasible solution)
方法 | tai15×15 | tai20×15 | tai20×20 | tai30×15 | tai30×20 | tai50×15 | tai50×20 | tai100×20 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | |
CP-SAT | 0.10 | 7.70 m | 0.20 | 0.80 h | 0.70 | 1.00 h | 2.10 | 1.00 h | 2.80 | 1.00 h | 0.00 | 0.40 h | 2.80 | 0.90 h | 3.90 | 1.00 h |
L2D | 24.70 | 0.40 s | 30.00 | 0.60 s | 28.80 | 1.10 s | 30.50 | 1.30 s | 32.90 | 1.50 s | 20.00 | 2.20 s | 23.90 | 3.60 s | 12.90 | 28.20 s |
RL-GNN | 20.10 | 3.00 s | 24.90 | 7.00 s | 29.20 | 12.00 s | 24.70 | 24.70 s | 32.00 | 38.00 s | 15.90 | 1.90 m | 21.30 | 3.20 m | 9.20 | 28.20 m |
ScheduleNet | 15.30 | 3.50 s | 19.40 | 6.60 s | 17.20 | 11.00 s | 19.10 | 17.10 s | 23.70 | 28.30 s | 13.90 | 52.50 s | 13.50 | 1.60 m | 6.70 | 7.40 m |
L2S-500 | 9.30 | 9.30 s | 11.60 | 10.10 s | 12.40 | 10.90 s | 14.70 | 12.70 s | 17.50 | 14.00 s | 11.00 | 16.20 s | 13.00 | 22.80 s | 7.90 | 50.20 s |
TBGAT-500 | 7.98 | 3.50 s | 10.87 | 3.99 s | 10.85 | 4.12 s | 12.80 | 8.64 s | 16.32 | 4.78 s | 8.45 | 5.87 s | 11.13 | 6.38 s | 5.82 | 10.68 s |
TBGAT-5000 | 6.28 | 34.77 s | 9.43 | 37.80 s | 8.85 | 41.98 s | 8.94 | 43.15 s | 12.51 | 47.68 s | 2.35 | 62.24 s | 6.10 | 62.60 s | 1.20 | 103.55 s |
本文算法 | 4.93 | 35.17 s | 7.93 | 38.80 s | 7.76 | 44.42 s | 7.81 | 46.36 s | 11.97 | 52.84 s | 1.90 | 78.72 s | 4.83 | 79.69 s | 0.87 | 114.61 s |
Table 1 Comparisons of our method and other mainstream methods
方法 | tai15×15 | tai20×15 | tai20×20 | tai30×15 | tai30×20 | tai50×15 | tai50×20 | tai100×20 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | Gap/% | 时间 | |
CP-SAT | 0.10 | 7.70 m | 0.20 | 0.80 h | 0.70 | 1.00 h | 2.10 | 1.00 h | 2.80 | 1.00 h | 0.00 | 0.40 h | 2.80 | 0.90 h | 3.90 | 1.00 h |
L2D | 24.70 | 0.40 s | 30.00 | 0.60 s | 28.80 | 1.10 s | 30.50 | 1.30 s | 32.90 | 1.50 s | 20.00 | 2.20 s | 23.90 | 3.60 s | 12.90 | 28.20 s |
RL-GNN | 20.10 | 3.00 s | 24.90 | 7.00 s | 29.20 | 12.00 s | 24.70 | 24.70 s | 32.00 | 38.00 s | 15.90 | 1.90 m | 21.30 | 3.20 m | 9.20 | 28.20 m |
ScheduleNet | 15.30 | 3.50 s | 19.40 | 6.60 s | 17.20 | 11.00 s | 19.10 | 17.10 s | 23.70 | 28.30 s | 13.90 | 52.50 s | 13.50 | 1.60 m | 6.70 | 7.40 m |
L2S-500 | 9.30 | 9.30 s | 11.60 | 10.10 s | 12.40 | 10.90 s | 14.70 | 12.70 s | 17.50 | 14.00 s | 11.00 | 16.20 s | 13.00 | 22.80 s | 7.90 | 50.20 s |
TBGAT-500 | 7.98 | 3.50 s | 10.87 | 3.99 s | 10.85 | 4.12 s | 12.80 | 8.64 s | 16.32 | 4.78 s | 8.45 | 5.87 s | 11.13 | 6.38 s | 5.82 | 10.68 s |
TBGAT-5000 | 6.28 | 34.77 s | 9.43 | 37.80 s | 8.85 | 41.98 s | 8.94 | 43.15 s | 12.51 | 47.68 s | 2.35 | 62.24 s | 6.10 | 62.60 s | 1.20 | 103.55 s |
本文算法 | 4.93 | 35.17 s | 7.93 | 38.80 s | 7.76 | 44.42 s | 7.81 | 46.36 s | 11.97 | 52.84 s | 1.90 | 78.72 s | 4.83 | 79.69 s | 0.87 | 114.61 s |
问题规模 | Pytorch版本 | Jittor版本 |
---|---|---|
15×15 | 4.93 | 5.25 |
20×15 | 7.93 | 7.89 |
20×20 | 7.76 | 7.68 |
30×15 | 7.81 | 7.86 |
30×20 | 11.97 | 12.06 |
50×15 | 1.90 | 1.91 |
50×20 | 4.83 | 4.76 |
100×20 | 0.87 | 0.99 |
Table 2 Comparisons of solution quality between two implementations/%
问题规模 | Pytorch版本 | Jittor版本 |
---|---|---|
15×15 | 4.93 | 5.25 |
20×15 | 7.93 | 7.89 |
20×20 | 7.76 | 7.68 |
30×15 | 7.81 | 7.86 |
30×20 | 11.97 | 12.06 |
50×15 | 1.90 | 1.91 |
50×20 | 4.83 | 4.76 |
100×20 | 0.87 | 0.99 |
问题规模 | 等值热力图+ 贪心算法解码 | 扩散模型生成热力图+ 贪心算法解码 |
---|---|---|
15×15 | 41.58 | 20.23 |
20×15 | 45.96 | 23.67 |
20×20 | 45.42 | 22.31 |
30×15 | 43.75 | 26.36 |
30×20 | 50.86 | 29.28 |
50×15 | 31.70 | 19.33 |
50×20 | 38.49 | 22.36 |
100×20 | 20.80 | 12.51 |
Table 3 Ablation study on heatmap/%
问题规模 | 等值热力图+ 贪心算法解码 | 扩散模型生成热力图+ 贪心算法解码 |
---|---|---|
15×15 | 41.58 | 20.23 |
20×15 | 45.96 | 23.67 |
20×20 | 45.42 | 22.31 |
30×15 | 43.75 | 26.36 |
30×20 | 50.86 | 29.28 |
50×15 | 31.70 | 19.33 |
50×20 | 38.49 | 22.36 |
100×20 | 20.80 | 12.51 |
[1] |
王霄汉, 张霖, 任磊, 等. 基于强化学习的车间调度问题研究简述[J]. 系统仿真学报, 2021, 33(12): 2782-2791.
DOI |
WANG X H, ZHANG L, REN L, et al. Brief review on applying reinforcement learning to job shop scheduling problems[J]. Journal of System Simulation, 2021, 33(12): 2782-2791 (in Chinese).
DOI |
|
[2] | 潘如媛. 深度强化学习求解作业调度问题方法研究[D]. 北京: 北京交通大学, 2020. |
PAN R Y. Research on deep reinforcement learning methods for solving flowshop scheduling problem[D]. Beijing: Beijing Jiaotong University, 2020 (in Chinese). | |
[3] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
DOI PMID |
[4] | HAUPT R. A survey of priority rule-based scheduling[J]. Operations-Research-Spektrum, 1989, 11(1): 3-16. |
[5] | HOLLAND J H. Adaptation in natural and artificial systems[EB/OL]. [2025-01-06]. https://www.researchgate.net/publication/242356870_Adaption_In_Natural_And_Artifical_Systems. |
[6] |
KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
DOI PMID |
[7] | SIVARAM M, KRISHNAN B, MOHAMMED A S, et al. Exploiting the local optima in genetic algorithm using Tabu search[J]. Indian Journal of Science and Technology, 2019, 12(1): 1-13. |
[8] | ZHANG C, SONG W, CAO Z G, et al. Learning to dispatch for job shop scheduling via deep reinforcement learning[C]// The 34th Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020:1621-1632. |
[9] | ZHANG C, CAO Z G, SONG W, et al. Deep reinforcement learning guided improvement heuristic for job shop scheduling[EB/OL]. [2025-01-16]. https://dblp.org/db/conf/iclr/iclr2024.html#ZhangCSW024. |
[10] | ZHANG C, CAO Z G, WU Y X, et al. Learning topological representations with bidirectional graph attention network for solving job shop scheduling problem[EB/OL]. (2025-01-03) [2025-01-16]. https://arxiv.org/pdf/2402.17606. |
[11] | SUN Z Q, YANG Y M. DIFUSCO: graph-based diffusion solvers for combinatorial optimization[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 164. |
[12] | LI Y, GUO J P, WANG R Z, et al. T2T: from distribution learning in training to gradient search in testing for combinatorial optimization[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 2176. |
[13] | YU K X, ZHAO H, HUANG Y H, et al. DISCO: efficient diffusion solver for large-scale combinatorial optimization problems[EB/OL]. (2024-06-28) [2025-01-16]. https://arxiv.org/pdf/2406.19705. |
[14] | HU S M, LIANG D, YANG G Y, et al. Jittor: a novel deep learning framework with meta-operators and unified graph execution[J]. Science China Information Sciences, 2020, 63(12): 222103. |
[15] | BALAS E. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm[J]. Operations Research, 1969, 17(6): 941-957. |
[16] | XU K L, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. (2018-10-01)[2025-01-16]. https://arxiv.org/pdf/1810.00826. |
[17] | PARK J, CHUN J, KIM S H, et al. Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning[J]. International Journal of Production Research, 2021, 59(11): 3360-3377. |
[18] | PARK J, BAKHTIYAR S, PARK J,. ScheduleNet: learn to solve multi-agent scheduling problems with reinforcement learning[EB/OL]. (2021-06-06) [2025-01-16]. https://arxiv.org/pdf/2106.03051. |
[19] | GRAIKOS A, MALKIN N, JOJIC N, et al. Diffusion models as plug-and-play priors[C]// The 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 1070. |
[20] | PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization: algorithms and complexity[M]. New York: Dover Publications, 1998: 1-25. |
[21] | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 574. |
[22] | HUANG Y H, QIN Z, LIU X W, et al. Decoupled diffusion models with explicit transition probability[EB/OL]. (2023-06-23) [2025-01-16]. https://arxiv.org/pdf/2306.13720v2. |
[23] | BRESSON X, LAURENT T. An experimental study of neural networks for variable graphs[EB/OL]. [2025-01-16]. https://dblp.org/db/conf/iclr/iclr2018w.html#Bresson018. |
[24] | TAILLARD E. Benchmarks for basic scheduling problems[J]. European Journal of Operational Research, 1993, 64(2): 278-285. |
[25] | PERRON L, FURNON V, LE MOLGAT C. Or-tools, 2019[EB/OL]. [2025-01-16]. https://egon.cheme.cmu.edu/ewo/docs/CP-SAT%20and%20OR-Tools.pdf. |
[26] | WANG R Q, WANG G, SUN J, et al. Flexible job shop scheduling via dual attention network-based reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3091-3102. |
[27] | ZHANG S S, SHE Q J, LI W H, et al. Learning dual-arm object rearrangement for Cartesian robots[C]// 2024 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2024: 7440-7446. |
[28] |
王鹏飞, 陶体伟, 焦点, 等. 融合多智能体与超图的复杂动态系统建模方法探索[J]. 图学学报, 2023, 44(3): 599-608.
DOI |
WANG P F, TAO T W, JIAO D, et al. Exploration on the modeling method of complex dynamic system integrating multi-agent and hypergraph[J]. Journal of Graphics, 2023, 44(3): 599-608 (in Chinese). | |
[29] | FU Z H, QIU K B, ZHA H Y. Generalize a small pre-trained model to arbitrarily large TSP instances[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 7474-7482. |
[30] |
罗亚波, 余晗琳. 求解包含复杂关联约束的JSSP的二级嵌套混合算法[J]. 图学学报, 2020, 41(1): 116-124.
DOI |
LUO Y B, YU H L. Two level nested hybrid algorithm for solving JSSP with complex associated constraints[J]. Journal of Graphics, 2020, 41(1): 116-124 (in Chinese). | |
[31] | YE H R, WANG J R, LIANG H L, et al. GLOP: learning global partition and local construction for solving large-scale routing problems in real-time[C]// The 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2024: 20284-20292. |
[32] | 刘晓平, 杜琳, 石慧. 基于Q学习的任务调度问题的改进研究[J]. 图学学报, 2012, 33(3): 11-16. |
LIU X P, DU L, SHI H. Improvement of task scheduling based on Q-learning[J]. Journal of Graphics, 2012, 33(3): 11-16 (in Chinese). |
[1] | LEI Yulin, LIU Ligang. Transport-and-packing with buffer via deep reinforcement learning [J]. Journal of Graphics, 2025, 46(3): 697-708. |
[2] | PENG Feng-fu, FANG Ming . Generalized Barycentric Coordinates Based on Combinatorial Optimization of Sparse Solutions [J]. Journal of Graphics, 2019, 40(1): 54-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||