Journal of Graphics ›› 2025, Vol. 46 ›› Issue (3): 697-708.DOI: 10.11996/JG.j.2095-302X.2025030697
• Digital Design and Manufacture • Previous Articles
Received:
2024-10-19
Accepted:
2025-02-19
Online:
2025-06-30
Published:
2025-06-13
Contact:
LIU Ligang
About author:
First author contact:LEI Yulin (2000-), master student. His main research interests cover computer graphics and deep learning. E-mail:yllei@mail.ustc.edu.cn
Supported by:
CLC Number:
LEI Yulin, LIU Ligang. Transport-and-packing with buffer via deep reinforcement learning[J]. Journal of Graphics, 2025, 46(3): 697-708.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025030697
Fig. 3 Moving access blocks and side access blocks between stacked objects ((a) Initially stacked objects; (b) Movement access blockage; (c) Negative side access blockage; (d) Positive side access blockage)
Fig. 5 Priority information encoding vector of the object (the original state and rotation state of the rectangle are marked with solid and striped patterns, respectively)
数据 | 方法 | 利用率 | 平均时间/ms |
---|---|---|---|
RAND-2D | Random | 0.805 0 | 5.274 3 |
Greedy | 0.887 5 | 18.545 3 | |
TAP-Net | 0.926 8 | 3.087 6 | |
Ours (B=2) | 0.966 6 | 3.817 0 | |
Ours (B=4) | 0.974 9 | 3.880 4 | |
RAND-3D | Random | 0.631 5 | 9.024 2 |
Greedy | 0.758 7 | 109.014 1 | |
TAP-Net | 0.806 3 | 6.459 8 | |
Ours (B=2) | 0.842 0 | 7.812 9 | |
Ours (B=4) | 0.845 9 | 7.749 9 |
Table 1 Performance comparison of various methods on the RAND dataset
数据 | 方法 | 利用率 | 平均时间/ms |
---|---|---|---|
RAND-2D | Random | 0.805 0 | 5.274 3 |
Greedy | 0.887 5 | 18.545 3 | |
TAP-Net | 0.926 8 | 3.087 6 | |
Ours (B=2) | 0.966 6 | 3.817 0 | |
Ours (B=4) | 0.974 9 | 3.880 4 | |
RAND-3D | Random | 0.631 5 | 9.024 2 |
Greedy | 0.758 7 | 109.014 1 | |
TAP-Net | 0.806 3 | 6.459 8 | |
Ours (B=2) | 0.842 0 | 7.812 9 | |
Ours (B=4) | 0.845 9 | 7.749 9 |
数据 | 方法 | 利用率 | 平均时间/ms |
---|---|---|---|
PPSG-2D | Random | 0.813 0 | 5.376 9 |
Greedy | 0.906 6 | 16.752 4 | |
TAP-Net | 0.945 2 | 3.066 6 | |
Ours (B=2) | 0.985 4 | 3.867 2 | |
Ours (B=4) | 0.994 7 | 3.865 9 | |
PPSG-3D | Random | 0.627 3 | 10.154 0 |
Greedy | 0.785 8 | 109.299 0 | |
TAP-Net | 0.827 8 | 6.199 4 | |
Ours (B=2) | 0.849 0 | 7.806 6 | |
Ours (B=4) | 0.847 4 | 7.871 1 |
Table 2 Performance comparison of various methods on the PPSG dataset
数据 | 方法 | 利用率 | 平均时间/ms |
---|---|---|---|
PPSG-2D | Random | 0.813 0 | 5.376 9 |
Greedy | 0.906 6 | 16.752 4 | |
TAP-Net | 0.945 2 | 3.066 6 | |
Ours (B=2) | 0.985 4 | 3.867 2 | |
Ours (B=4) | 0.994 7 | 3.865 9 | |
PPSG-3D | Random | 0.627 3 | 10.154 0 |
Greedy | 0.785 8 | 109.299 0 | |
TAP-Net | 0.827 8 | 6.199 4 | |
Ours (B=2) | 0.849 0 | 7.806 6 | |
Ours (B=4) | 0.847 4 | 7.871 1 |
Fig. 9 Comparison of the reward functions during the training processes of the proposed network and TAP-Net ((a) Using the 2D RAND dataset; (b) Using the 3D RAND dataset; (c) Using the 2D PPSG dataset; (d) Using the 3D PPSG dataset)
物体数量 | 方法 | 利用率 |
---|---|---|
30 | Greedy | 0.896 2 |
Ours | 0.981 0 | |
40 | Greedy | 0.899 9 |
Ours | 0.984 1 | |
50 | Greedy | 0.902 4 |
Ours | 0.985 8 | |
60 | Greedy | 0.903 7 |
Ours | 0.986 8 |
Table 3 Performance comparison of the trained networks on datasets containing more objects
物体数量 | 方法 | 利用率 |
---|---|---|
30 | Greedy | 0.896 2 |
Ours | 0.981 0 | |
40 | Greedy | 0.899 9 |
Ours | 0.984 1 | |
50 | Greedy | 0.902 4 |
Ours | 0.985 8 | |
60 | Greedy | 0.903 7 |
Ours | 0.986 8 |
方法 | 利用率 |
---|---|
Ours (B=2)+静态信息 | 0.956 9 |
Ours (B=2)+动态信息 | 0.966 6 |
Ours (B=4)+静态信息 | 0.963 1 |
Ours (B=4)+动态信息 | 0.974 9 |
Table 4 Packing results of the network using static and dynamic information as inputs
方法 | 利用率 |
---|---|
Ours (B=2)+静态信息 | 0.956 9 |
Ours (B=2)+动态信息 | 0.966 6 |
Ours (B=4)+静态信息 | 0.963 1 |
Ours (B=4)+动态信息 | 0.974 9 |
方法 | 利用率 |
---|---|
Ours (B=2)+仅几何信息 | 0.899 4 |
Ours (B=2)+添加高度图 | 0.966 6 |
Ours (B=4)+仅几何信息 | 0.912 5 |
Ours (B=4)+添加高度图 | 0.974 9 |
Table 5 Comparison of network performance before and after using height map encoding information
方法 | 利用率 |
---|---|
Ours (B=2)+仅几何信息 | 0.899 4 |
Ours (B=2)+添加高度图 | 0.966 6 |
Ours (B=4)+仅几何信息 | 0.912 5 |
Ours (B=4)+添加高度图 | 0.974 9 |
[1] | FENG B, LI Y Z, SHEN Z J M. Air cargo operations: literature review and comparison with practices[J]. Transportation Research Part C: Emerging Technologies, 2015, 56: 263-280. |
[2] | YOU S J, JI S H. Design of a multi-robot bin packing system in an automatic warehouse[C]// The 11th International Conference on Informatics in Control, Automation and Robotics. New York: IEEE Press, 2014: 533-538. |
[3] | SILVA E F, TOFFOLO T A M, WAUTERS T. Exact methods for three-dimensional cutting and packing: a comparative study concerning single container problems[J]. Computers & Operations Research, 2019, 109: 12-27. |
[4] | LODI A, MARTELLO S, VIGO D. Heuristic algorithms for the three-dimensional bin packing problem[J]. European Journal of Operational Research, 2002, 141(2): 410-420. |
[5] | FAROE O, PISINGER D, ZACHARIASEN M. Guided local search for the three-dimensional bin-packing problem[J]. INFORMS Journal on Computing, 2003, 15(3): 267-283. |
[6] | CRAINIC T G, PERBOLI G, TADEI R. Extreme point-based heuristics for three-dimensional bin packing[J]. INFORMS Journal on Computing, 2008, 20(3): 368-384. |
[7] | FANSLAU T, BORTFELDT A. A tree search algorithm for solving the container loading problem[J]. INFORMS Journal on Computing, 2010, 22(2): 222-235. |
[8] | 易向阳, 潘卫平, 张俊晖. 基于五块模式的单一矩形件排样算法[J]. 图学学报, 2015, 36(4): 521-525. |
YI X Y, PAN W P, ZHANG J H. Algorithm for generating five block mode cutting patterns of single rectangular items[J]. Journal of Graphics, 2015, 36(4): 521-525 (in Chinese). | |
[9] | KANG K, MOON I, WANG H F. A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem[J]. Applied Mathematics and Computation, 2012, 219(3): 1287-1299. |
[10] | 王金敏, 王保春, 朱艳华. 求解矩形布局问题的自适应算法[J]. 图学学报, 2012, 33(3): 29-33. |
WANG J M, WANG B C, ZHU Y H. An adaptive algorithm for rectangular packing problems[J]. Journal of Graphics, 2012, 33(3): 29-33 (in Chinese). | |
[11] | VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[C]// The 29th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2692-2700. |
[12] | BELLO I, PHAM H, LE Q V, et al. Neural combinatorial optimization with reinforcement learning[EB/OL]. [2024-10-18]https://arxiv.org/abs/1611.09940. |
[13] | NAZARI M, OROOJLOOY A, TAKÁC M, et al. Reinforcement learning for solving the vehicle routing problem[C]// The 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 9861-9871. |
[14] | HU H Y, ZHANG X D, YAN X W, et al. Solving a new 3D bin packing problem with deep reinforcement learning method[EB/OL]. [2024-10-18]https://arxiv.org/abs/1708.05930. |
[15] | DUAN L, HU H Y, QIAN Y, et al. A multi-task selected learning approach for solving 3D flexible bin packing problem[EB/OL]. [2024-10-18]https://arxiv.org/abs/1804.06896. |
[16] | LATERRE A, FU Y G, JABRI M K, et al. Ranked reward: enabling self-play reinforcement learning for combinatorial optimization[EB/OL]. [2024-10-18]https://arxiv.org/abs/1807.01672. |
[17] | LI D D, GU Z Q, WANG Y X, et al. One model packs thousands of items with recurrent conditional query learning[J]. Knowledge-Based Systems, 2022, 235: 107683. |
[18] | ZHAO H, SHE Q J, ZHU C Y, et al. Online 3D bin packing with constrained deep reinforcement learning[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 741-749. |
[19] | 朱鹏辉, 袁宏涛, 聂勇伟, 等. AC-HAPE3D: 基于强化学习的异形填充算法[J]. 图学学报, 2022, 43(6): 1096-1103. |
ZHU P H, YUAN H T, NIE Y W, et al. AC-HAPE3D: an algorithm for irregular packing based on reinforcement learning[J]. Journal of Graphics, 2022, 43(6): 1096-1103 (in Chinese). | |
[20] | HU R Z, XU J Z, CHEN B, et al. TAP-Net: transport-and-pack using reinforcement learning[J]. ACM Transactions on Graphics, 2020, 39(6): 232. |
[21] | XU J Z, GONG M L, ZHANG H, et al. Neural packing: from visual sensing to reinforcement learning[J]. ACM Transactions on Graphics, 2023, 42(6): 267. |
[22] | RAMOS A G, OLIVEIRA J F, GONÇALVES J F, et al. A container loading algorithm with static mechanical equilibrium stability constraints[J]. Transportation Research Part B: Methodological, 2016, 91: 565-581. |
[23] | BUSONIU L, BABUSKA R, DE SCHUTTER B. A comprehensive survey of multiagent reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(2): 156-172. |
[24] | WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3): 229-256. |
[1] | NIU Hang, GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming, ZHAI Yongjie. Vibration damper defect detection algorithm based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(3): 532-541. |
[2] | YU Bing, CHENG Guang, HUANG Dongjin, DING Youdong. 3D human mesh reconstruction based on dual-stream network fusion [J]. Journal of Graphics, 2025, 46(3): 625-634. |
[3] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
[4] | CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s [J]. Journal of Graphics, 2025, 46(1): 13-27. |
[5] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
[6] | ZHANG Wenxiang, WANG Xiali, WANG Xinyi, YANG Zongbao. A deepfake face detection method that enhances focus on forgery regions [J]. Journal of Graphics, 2025, 46(1): 47-58. |
[7] | LU Yang, CHEN Linhui, JIANG Xiaoheng, XU Mingliang. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception [J]. Journal of Graphics, 2025, 46(1): 94-103. |
[8] | XU Pei, HUANG Kaiqi. An efficient reinforcement learning method based on large language model [J]. Journal of Graphics, 2024, 45(6): 1165-1177. |
[9] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[10] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[11] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[12] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[13] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[14] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[15] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||