Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 78-89.DOI: 10.11996/JG.j.2095-302X.2024010078
Previous Articles Next Articles
LI Jiaqi(), WANG Hui(
), GUO Yu
Received:
2023-06-29
Accepted:
2023-11-08
Online:
2024-02-29
Published:
2024-02-29
Contact:
WANG Hui (1983-), professor, Ph.D. His main research interests cover computer graphics, graphic image processing, etc. About author:
LI Jiaqi (1997-), master student. Her main research interest covers computer graphics. E-mail:1202110055@student.stdu.edu.cn
Supported by:
CLC Number:
LI Jiaqi, WANG Hui, GUO Yu. Classification and segmentation network based on Transformer for triangular mesh[J]. Journal of Graphics, 2024, 45(1): 78-89.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010078
方法 | Split10 | Cube |
---|---|---|
MDC-GCN[ | 99.2 | 95.0 |
MeshNet++[ | 99.8 | 98.5 |
LaplacianNet[ | 90.3 | - |
HodgeNet[ | 94.7 | - |
FPCNN[ | 97.1 | 97.1 |
SCSL[ | 97.7 | 97.0 |
DiffusionNet[ | 99.7 | 85.6 |
SubdivNet[ | 100 | 100 |
Face-based CNN[ | 100 | 99.4 |
本文方法-XYZ | 99.7 | 97.1 |
本文方法-HKS | 100 | 98.5 |
Table 1 Classification result on SHREC’11 and Cube engraving datasets/%
方法 | Split10 | Cube |
---|---|---|
MDC-GCN[ | 99.2 | 95.0 |
MeshNet++[ | 99.8 | 98.5 |
LaplacianNet[ | 90.3 | - |
HodgeNet[ | 94.7 | - |
FPCNN[ | 97.1 | 97.1 |
SCSL[ | 97.7 | 97.0 |
DiffusionNet[ | 99.7 | 85.6 |
SubdivNet[ | 100 | 100 |
Face-based CNN[ | 100 | 99.4 |
本文方法-XYZ | 99.7 | 97.1 |
本文方法-HKS | 100 | 98.5 |
方法 | 花瓶 | 椅子 | 外星人 |
---|---|---|---|
MeshCNN[ | 92.4 | 93.0 | 96.3 |
PD-MeshNet[ | 95.4 | 97.2 | 98.1 |
HodgeNet[ | 90.3 | 95.7 | 96.0 |
DiffusionNet[ | - | 96.8 | - |
Face-based CNN[ | 95.9 | 99.2 | 97.8 |
本文方法-XYZ | 95.9 | 99.1 | 96.7 |
本文方法-HKS | 94.9 | 97.8 | 94.1 |
Table 2 Segmentation result on COSEG datasets/%
方法 | 花瓶 | 椅子 | 外星人 |
---|---|---|---|
MeshCNN[ | 92.4 | 93.0 | 96.3 |
PD-MeshNet[ | 95.4 | 97.2 | 98.1 |
HodgeNet[ | 90.3 | 95.7 | 96.0 |
DiffusionNet[ | - | 96.8 | - |
Face-based CNN[ | 95.9 | 99.2 | 97.8 |
本文方法-XYZ | 95.9 | 99.1 | 96.7 |
本文方法-HKS | 94.9 | 97.8 | 94.1 |
方法 | 外星人 |
---|---|
MeshCNN[ | 94.4 |
PD-MeshNet[ | 89.0 |
LaplacianNet[ | 93.9 |
NGD-Transformer[ | 94.3 |
SubdivNet[ | 97.3 |
Face-based CNN[ | 96.0 |
本文方法-XYZ | 95.5 |
Table 3 Segmentation results on the original grid/%
方法 | 外星人 |
---|---|
MeshCNN[ | 94.4 |
PD-MeshNet[ | 89.0 |
LaplacianNet[ | 93.9 |
NGD-Transformer[ | 94.3 |
SubdivNet[ | 97.3 |
Face-based CNN[ | 96.0 |
本文方法-XYZ | 95.5 |
方法 | Human |
---|---|
MeshCNN[ | 85.4 |
PD-MeshNet[ | 85.6 |
HodgeNet[ | 85.0 |
MDC-GCN[ | 94.0 |
DiffusionNet[ | 85.0* |
SubdivNet[ | 91.7 |
Face-based CNN[ | 87.4 |
本文方法-XYZ | 85.0 |
本文方法-HKS | 84.5 |
Table 4 Result on Human body segmentation datasets/%
方法 | Human |
---|---|
MeshCNN[ | 85.4 |
PD-MeshNet[ | 85.6 |
HodgeNet[ | 85.0 |
MDC-GCN[ | 94.0 |
DiffusionNet[ | 85.0* |
SubdivNet[ | 91.7 |
Face-based CNN[ | 87.4 |
本文方法-XYZ | 85.0 |
本文方法-HKS | 84.5 |
方法 | SHREC’11 | Human |
---|---|---|
Face-based CNN[ | 56 | 170 |
DiffusionNet[ | 31 | 62 |
本文方法 | 13 | 46 |
Table 5 Mean training time/ms
方法 | SHREC’11 | Human |
---|---|---|
Face-based CNN[ | 56 | 170 |
DiffusionNet[ | 31 | 62 |
本文方法 | 13 | 46 |
方法 | SHREC’11 | Human |
---|---|---|
Face-based CNN[ | 875 | 1249 |
DiffusionNet[ | 561 | 593 |
本文方法 | 893 | 1001 |
Table 6 CPU memory usage/MB
方法 | SHREC’11 | Human |
---|---|---|
Face-based CNN[ | 875 | 1249 |
DiffusionNet[ | 561 | 593 |
本文方法 | 893 | 1001 |
方法 | SHREC’11 | Human |
---|---|---|
Face-based CNN[ | 0.312 | 8.572 |
DiffusionNet[ | 0.119 | 0.464 |
本文方法 | 1.642 | 1.637 |
Table 7 The number of network model parameters/MB
方法 | SHREC’11 | Human |
---|---|---|
Face-based CNN[ | 0.312 | 8.572 |
DiffusionNet[ | 0.119 | 0.464 |
本文方法 | 1.642 | 1.637 |
方法 | 花瓶 | 椅子 | 外星人 |
---|---|---|---|
面特征预处理 | 95.38 | 92.65 | 90.00 |
无 | 95.13 | 94.79 | 93.05 |
归一化 | 95.85 | 99.06 | 96.68 |
Table 8 Preprocessing method of three-dimensional coordinate/%
方法 | 花瓶 | 椅子 | 外星人 |
---|---|---|---|
面特征预处理 | 95.38 | 92.65 | 90.00 |
无 | 95.13 | 94.79 | 93.05 |
归一化 | 95.85 | 99.06 | 96.68 |
特征通道 | 归一化 | 未归一化 |
---|---|---|
3 | 94.78 | 94.85 |
8 | 94.35 | 94.52 |
16 | 94.35 | 94.67 |
Table 9 Preprocessing method of heat kernel signature/%
特征通道 | 归一化 | 未归一化 |
---|---|---|
3 | 94.78 | 94.85 |
8 | 94.35 | 94.52 |
16 | 94.35 | 94.67 |
位置编码 | 花瓶 |
---|---|
XYZ | 95.85 |
HKS | 94.85 |
XYZ+HKS | 95.12 |
Table 10 Location coding fusion experiment/%
位置编码 | 花瓶 |
---|---|
XYZ | 95.85 |
HKS | 94.85 |
XYZ+HKS | 95.12 |
特征通道 | 训练轮数 | 花瓶/% |
---|---|---|
KNN | 600 | 95.00 |
DiffusionNet[ | - | - |
面卷积 | 200 | 95.85 |
Table 11 Accuracy comparison of embeddings in different positions
特征通道 | 训练轮数 | 花瓶/% |
---|---|---|
KNN | 600 | 95.00 |
DiffusionNet[ | - | - |
面卷积 | 200 | 95.85 |
自注意力模块数量 | 1/4 | 1 |
---|---|---|
1 | 95.01 | - |
2 | 95.85 | 94.26 |
3 | 95.28 | 93.98 |
4 | 95.10 | - |
Table 12 Different number of self-attention modules and output feature channel accuracy/%
自注意力模块数量 | 1/4 | 1 |
---|---|---|
1 | 95.01 | - |
2 | 95.85 | 94.26 |
3 | 95.28 | 93.98 |
4 | 95.10 | - |
特征融合 | 花瓶 |
---|---|
最大池化[ | 94.14 |
最大池化+平均池化[ | 95.00 |
面卷积(局部) | 95.85 |
Table 13 Accuracy of different feature fusion methods/%
特征融合 | 花瓶 |
---|---|
最大池化[ | 94.14 |
最大池化+平均池化[ | 95.00 |
面卷积(局部) | 95.85 |
[1] | 王金祥, 付立军, 尹鹏滨, 等. 基于CNN与Transformer的医学图像分割[J]. 计算机系统应用, 2023, 32(4): 141-148. |
WANG J X, FU L J, YIN P B, et al. Medical image segmentation based on CNN and transformer[J]. Computer Systems and Applications, 2023, 32(4): 141-148 (in Chinese). | |
[2] | 赵伟, 王文娟, 任彦凝, 等. 基于改进Transformer的生成式文本摘要模型[J]. 重庆邮电大学学报: 自然科学版, 2023, 35(1): 185-192. |
ZHAO W, WANG W J, REN Y N, et al. A generative abstractive summarization method based on the improved Transformer[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2023, 35(1): 185-192 (in Chinese). | |
[3] | 陈为, 杨鑫. 计算机图形学与人工智能融合引领三维数字中国新变革[J]. 中国计算机学会通讯, 2021, 17(11): 8-10. |
CHEN W, YANG X. The integration of computer graphics and artificial intelligence leads the new transformation of 3D digital China[J]. Communications of the CCF, 2021, 17(11): 8-10 (in Chinese). | |
[4] | BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42. |
[5] |
CHEN Y, ZHAO J Y, QIU Q L. A transformer-based capsule network for 3D part-whole relationship learning[J]. Entropy, 2022, 24(5): 678.
DOI URL |
[6] | LIAN Z, GODIL A, BUSTOS B, et al. SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes[EB/OL]. [2023- 05-18]. http://reuter.mit.edu/blue/papers/shrec11/shrec11.pdf. |
[7] | 龚思洁, 贺炯臻, 陈小雕. 基于能量优化的三维网格模型分割方法[J]. 计算机辅助设计与图形学学报, 2021, 33(1): 11-18. |
GONG S J, HE J Z, CHEN X D. 3D mesh segmentation based on energy optimization[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(1): 11-18 (in Chinese). | |
[8] | 刘洋, 高林, 韩晓光. 三维几何学习[J]. 中国计算机学会通讯, 2021, 17(11): 53-62. |
LIU Y, GAO L, HAN X G. 3D geometry learning[J]. Communications of the CCF, 2021, 17(11): 53-62 (in Chinese). | |
[9] |
XIAO Y P, LAI Y K, ZHANG F L, et al. A survey on deep geometry learning: from a representation perspective[J]. Computational Visual Media, 2020, 6(2): 113-133.
DOI |
[10] | WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1912-1920. |
[11] | SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 945-953. |
[12] | QI C R, SU H, NIEßNER M, et al. Volumetric and multi-view CNNs for object classification on 3D data[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 5648-5656. |
[13] | CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[14] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// The 31st International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 5105-5114. |
[15] | LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transfor-med points[EB/OL]. [2023-05-18]. https://www.semanticscholar.org/reader/6400c36efdb8a66b401b6aef26c057227266fddd. |
[16] | THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]// 2019 IEEE International Conference on Computer Vision. New York: IEEE Press, 2019: 6410-6419. |
[17] |
GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199.
DOI |
[18] | 杨世强, 杨江涛, 李卓, 等. 基于LSTM神经网络的人体动作识别[J]. 图学学报, 2021, 42(2): 174-181. |
YANG S Q, YANG J T, LI Z, et al. Human action recognition based on LSTM neural network[J]. Journal of Graphics, 2021, 42(2): 174-181 (in Chinese).
DOI |
|
[19] | 王辉, 宋佳豪, 丁铂栩, 等. 三角形网格序列表示的人体动作识别[J]. 计算机辅助设计与图形学学报, 2022, 34(11): 1723-1730. |
WANG H, SONG J H, DING B X, et al. Human action recognition of triangle mesh sequence representation[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(11): 1723-1730 (in Chinese). | |
[20] | LAHAV A, TAL A. Mesh Walker: deep mesh understanding by random walks[J]. ACM Transactions on Graphics, 2020, 39(6): 263:1-263:13. |
[21] | SMIRNOV D, SOLOMON J. HodgeNet: learning spectral geometry on triangle meshes[J]. ACM Transactions on Graphics, 2021, 40(4): 166:1-166:11. |
[22] | SHARP N, ATTAIKI S, CRANE K, et al. DiffusionNet: discretization agnostic learning on surfaces[J]. ACM Transactions on Graphics, 2022, 41(3): 27:1-27:16. |
[23] |
QIAO Y L, GAO L, YANG J, et al. Learning on 3D meshes with Laplacian encoding and pooling[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(2): 1317-1327.
DOI URL |
[24] | MARON H, GALUN M, AIGERMAN N, et al. Convolutional neural networks on surfaces via seamless toric covers[J]. ACM Transactions on Graphics, 2017, 36(4): 71:1-71:10. |
[25] | EZUZ D, SOLOMON J, KIM V G, et al. GWCNN: a metric alignment layer for deep shape analysis[J]. Computer Graphics Forum, 2017, 36(5): 49-57. |
[26] | MITCHEL T W, KIM V G, KAZHDAN M. Field convolutions for surface CNNs[C]// 2021 IEEE International Conference on Computer Vision. New York: IEEE Press, 2022: 9981-9991. |
[27] |
TANG W M, QIU G P. Dense graph convolutional neural networks on 3D meshes for 3D object segmentation and classification[J]. Image and Vision Computing, 2021, 114: 104265:1-104265:12.
DOI URL |
[28] | FENG Y T, FENG Y F, YOU H X, et al. MeshNet: mesh neural network for 3D shape representation[J]. The 33th AAAI Conference on Artificial Intelligence, 2019, 33(1): 8279-8286. |
[29] | SINGH V V, SHESHAPPANAVAR S V, KAMBHAMETTU C. MeshNet++: a network with a face[C]// The 29th ACM International Conference on Multimedia. New York: ACM, 2021: 4883-4891. |
[30] | HANOCKA R, HERTZ A, FISH N, et al. MeshCNN: a network with an edge[J]. ACM Transactions on Graphics, 2019, 38(4): 90:1-90:12. |
[31] | HU S M, LIU Z N, GUO M H, et al. Subdivision-based mesh convolution networks[J]. ACM Transactions on Graphics, 2022, 41(3): 25:1-25:16. |
[32] |
WANG H, GUO Y, WANG Z Y. Face-based CNN on triangular mesh with arbitrary connectivity[J]. Electronics, 2022, 11(15): 2466.
DOI URL |
[33] |
ZHUANG J F, LIU X F, ZHUANG W. NGD-transformer: navigation geodesic distance positional encoding with self-attention pooling for graph transformer on 3D triangle mesh[J]. Symmetry, 2022, 14(10): 2050:1-2050:15.
DOI URL |
[34] |
CHEN Y, ZHAO J Y, HUANG L F, et al. 3D mesh transformer: a hierarchical neural network with local shape tokens[J]. Neurocomputing, 2022, 514: 328-340.
DOI URL |
[35] |
LIU C M, LUAN W N, FU R H, et al. Attention-embedding mesh saliency[J]. The Visual Computer, 2023, 39(5): 1783-1795.
DOI |
[36] | MILANO F, LOQUERCIO A, ROSINOL A, et al. Primal-dual mesh convolutional neural networks[C]// The 34th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 952-963. |
[1] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. |
[2] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[3] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[4] | SHI Min, ZHUO Xinru, SUN Bilian, HAN Guoqing, ZHU Dengming. Unsupervised clothing animation prediction for different styles [J]. Journal of Graphics, 2024, 45(3): 539-547. |
[5] | LV Heng, YANG Hongyu. A 3D human pose estimation approach based on spatio-temporal motion interaction modeling [J]. Journal of Graphics, 2024, 45(1): 159-168. |
[6] | HUANG Shao-nian, WEN Pei-ran, QUAN Qi, CHEN Rong-yuan. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection [J]. Journal of Graphics, 2023, 44(6): 1173-1182. |
[7] | SHI Jia-hao, YAO Li. Video captioning based on semantic guidance [J]. Journal of Graphics, 2023, 44(6): 1191-1201. |
[8] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[9] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. |
[10] | HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5 [J]. Journal of Graphics, 2023, 44(4): 667-676. |
[11] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. |
[12] | PAN Dong-hui, JIN Ying-han, SUN Xu, LIU Yu-sheng, ZHANG Dong-liang. CTH-Net: CNN-Transformer hybrid network for garment image generation from sketches and color points [J]. Journal of Graphics, 2023, 44(1): 120-130. |
[13] | WANG Yu-ping, ZENG Yi, LI Sheng-hui, ZHANG Lei. A Transformer-based 3D human pose estimation method [J]. Journal of Graphics, 2023, 44(1): 139-145. |
[14] | LIU Zhen-ye, CHEN Ren-jie, LIU Li-gang. Edge length based 3D shape interpolation [J]. Journal of Graphics, 2023, 44(1): 158-165. |
[15] | HU Hai-tao , DU Hao-chen , WANG Su-qin , SHI Min , ZHU Deng-ming, . Improved YOLOX method for detecting surface defects of drug blister aluminum foil [J]. Journal of Graphics, 2022, 43(5): 803-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||