Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 65-77.DOI: 10.11996/JG.j.2095-302X.2024010065
• Image Processing and Computer Vision • Previous Articles Next Articles
WANG Xinyu1,2(), LIU Hui1,2(
), ZHU Jicheng1,2, SHENG Yurui3, ZHANG Caiming2,4
Received:
2023-07-20
Accepted:
2023-09-20
Online:
2024-02-29
Published:
2024-02-29
Contact:
LIU Hui (1978-), professor, Ph.D. Her main research interests cover data mining and visualization. E-mail:About author:
WANG Xinyu (1999-), master student. Her main research interest covers multimodal data fusion. E-mail:wangxy@mail.sdufe.edu.cn
Supported by:
CLC Number:
WANG Xinyu, LIU Hui, ZHU Jicheng, SHENG Yurui, ZHANG Caiming. Deep multimodal medical image fusion network based on high-low frequency feature decomposition[J]. Journal of Graphics, 2024, 45(1): 65-77.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010065
Fig. 3 Comparison of ablation experiment results ((a) The source image pairs of MR-T1/MR-T2; (b) The source image pairs of MR/PET; (c) Single attention; (d) Attention concatenation)
实验方式 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
单个注意力 | 64.450 2 | 0.570 1 | 0.872 8 | 3.018 9 | 0.516 8 |
注意力串联 | 64.889 4 | 0.715 8 | 0.888 1 | 3.588 7 | 0.615 6 |
Table 1 Comparative study of average quantitative metrics in MR-T1/MR-T2 image fusion ablation experiments
实验方式 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
单个注意力 | 64.450 2 | 0.570 1 | 0.872 8 | 3.018 9 | 0.516 8 |
注意力串联 | 64.889 4 | 0.715 8 | 0.888 1 | 3.588 7 | 0.615 6 |
实验方式 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
单个注意力 | 63.103 8 | 0.615 2 | 0.847 9 | 2.240 1 | 0.444 3 |
注意力串联 | 63.250 8 | 0.692 9 | 0.844 6 | 3.596 3 | 0.725 1 |
Table 2 Comparative study of average quantitative metrics in MR/PET image fusion ablation experiments
实验方式 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
单个注意力 | 63.103 8 | 0.615 2 | 0.847 9 | 2.240 1 | 0.444 3 |
注意力串联 | 63.250 8 | 0.692 9 | 0.844 6 | 3.596 3 | 0.725 1 |
数据集类别 | 图像数量/幅 | 图像分辨率/bit | 层间距/mm | 病灶数据 |
---|---|---|---|---|
CT | 329 | 256×256 | 5 | 钙化灶:最大截面:2.3×1.9 cm2 转移瘤直径:4.5 cm |
PET | 329 | 256×256 | 1 | 肿大淋巴结直:1.4 cm |
MRT1/T2 | 74 | 256×256 | 5 | 肾囊肿:数量3,最大径:0.6 cm,最小径:0.3 cm, 形状:类圆形,边界清晰 |
Table 3 Relevant information about the self-built abdominal dataset
数据集类别 | 图像数量/幅 | 图像分辨率/bit | 层间距/mm | 病灶数据 |
---|---|---|---|---|
CT | 329 | 256×256 | 5 | 钙化灶:最大截面:2.3×1.9 cm2 转移瘤直径:4.5 cm |
PET | 329 | 256×256 | 1 | 肿大淋巴结直:1.4 cm |
MRT1/T2 | 74 | 256×256 | 5 | 肾囊肿:数量3,最大径:0.6 cm,最小径:0.3 cm, 形状:类圆形,边界清晰 |
Fig. 6 MR-T1/MR-T2 source images and fusion results using different comparative methods ((a) MR-T1; (b) MR-T2; (c) EMFusion; (d) FusionGAN; (e) IFCNN; (f) ZLFMIF; (g) DDIFN; (h) MLCF; (i) Ours)
对比方法 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
EMFusion | 64.240 7 | 0.717 1 | 0.881 4 | 2.879 3 | 0.482 6 |
FusionGAN | 62.145 4 | 0.238 1 | 0.304 9 | 2.395 8 | 0.304 9 |
IFCNN | 63.906 2 | 0.706 3 | 0.874 8 | 2.979 3 | 0.513 2 |
ZLFMIF | 62.971 6 | 0.660 8 | 0.838 4 | 4.288 2 | 0.530 4 |
DDIFN | 61.594 9 | 0.469 3 | 0.722 6 | 1.910 6 | 0.492 8 |
MLCF | 61.766 9 | 0.614 1 | 0.751 3 | 3.895 5 | 0.731 5 |
本文方法 | 64.889 4 | 0.715 8 | 0.888 1 | 3.588 7 | 0.615 6 |
Table 4 Average quantitative metrics for MR-T1/MR-T2 image fusion under different methods
对比方法 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
EMFusion | 64.240 7 | 0.717 1 | 0.881 4 | 2.879 3 | 0.482 6 |
FusionGAN | 62.145 4 | 0.238 1 | 0.304 9 | 2.395 8 | 0.304 9 |
IFCNN | 63.906 2 | 0.706 3 | 0.874 8 | 2.979 3 | 0.513 2 |
ZLFMIF | 62.971 6 | 0.660 8 | 0.838 4 | 4.288 2 | 0.530 4 |
DDIFN | 61.594 9 | 0.469 3 | 0.722 6 | 1.910 6 | 0.492 8 |
MLCF | 61.766 9 | 0.614 1 | 0.751 3 | 3.895 5 | 0.731 5 |
本文方法 | 64.889 4 | 0.715 8 | 0.888 1 | 3.588 7 | 0.615 6 |
Fig. 7 MR/PET source images and fusion results using different comparative methods ((a) MR; (b) PET; (c) EMFusion; (d) FusionGAN; (e) IFCNN; (f) ZLFMIF; (g) DDIFN; (h) MLCF; (i) Ours)
对比方法 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
EMFusion | 61.878 1 | 0.691 1 | 0.796 9 | 3.040 6 | 0.658 3 |
FusionGAN | 58.002 8 | 0.103 4 | 0.710 7 | 1.949 9 | 0.217 6 |
IFCNN | 62.117 3 | 0.678 8 | 0.825 3 | 2.529 8 | 0.505 9 |
ZLFMIF | 61.293 9 | 0.671 4 | 0.615 2 | 3.638 2 | 0.615 2 |
DDIFN | 60.213 5 | 0.672 0 | 0.718 9 | 1.901 3 | 0.213 6 |
MLCF | 60.895 6 | 0.554 5 | 0.749 8 | 2.026 3 | 0.250 6 |
本文方法 | 63.250 8 | 0.692 9 | 0.844 6 | 3.596 3 | 0.725 1 |
Table 5 Average quantitative metrics for MR/PET image fusion under different methods
对比方法 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
EMFusion | 61.878 1 | 0.691 1 | 0.796 9 | 3.040 6 | 0.658 3 |
FusionGAN | 58.002 8 | 0.103 4 | 0.710 7 | 1.949 9 | 0.217 6 |
IFCNN | 62.117 3 | 0.678 8 | 0.825 3 | 2.529 8 | 0.505 9 |
ZLFMIF | 61.293 9 | 0.671 4 | 0.615 2 | 3.638 2 | 0.615 2 |
DDIFN | 60.213 5 | 0.672 0 | 0.718 9 | 1.901 3 | 0.213 6 |
MLCF | 60.895 6 | 0.554 5 | 0.749 8 | 2.026 3 | 0.250 6 |
本文方法 | 63.250 8 | 0.692 9 | 0.844 6 | 3.596 3 | 0.725 1 |
Fig. 8 CT/PET source images and fusion results using different comparative methods ((a) CT; (b) PET; (c) EMFusion; (d) FusionGAN; (e) IFCNN; (f) ZLFMIF; (g) DDIFN; (h) MLCF; (i) Ours)
对比方法 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
EMFusion | 65.609 4 | 0.722 8 | 0.795 3 | 2.982 6 | 0.739 2 |
FusionGAN | 62.288 5 | 0.105 9 | 0.643 8 | 2.104 5 | 0.177 1 |
IFCNN | 65.481 6 | 0.718 1 | 0.826 1 | 2.960 8 | 0.685 5 |
ZLFMIF | 64.959 3 | 0.715 1 | 0.787 4 | 3.294 8 | 0.735 3 |
DDIFN | 65.303 1 | 0.655 5 | 0.734 5 | 2.542 7 | 0.525 6 |
MLCF | 65.716 5 | 0.692 3 | 0.822 4 | 3.180 6 | 0.661 8 |
本文方法 | 66.879 2 | 0.731 7 | 0.861 5 | 3.394 7 | 0.818 6 |
Table 6 Average quantitative metrics for CT/PET image fusion under different methods
对比方法 | PSNR | SSIM | CC | MI | VIF |
---|---|---|---|---|---|
EMFusion | 65.609 4 | 0.722 8 | 0.795 3 | 2.982 6 | 0.739 2 |
FusionGAN | 62.288 5 | 0.105 9 | 0.643 8 | 2.104 5 | 0.177 1 |
IFCNN | 65.481 6 | 0.718 1 | 0.826 1 | 2.960 8 | 0.685 5 |
ZLFMIF | 64.959 3 | 0.715 1 | 0.787 4 | 3.294 8 | 0.735 3 |
DDIFN | 65.303 1 | 0.655 5 | 0.734 5 | 2.542 7 | 0.525 6 |
MLCF | 65.716 5 | 0.692 3 | 0.822 4 | 3.180 6 | 0.661 8 |
本文方法 | 66.879 2 | 0.731 7 | 0.861 5 | 3.394 7 | 0.818 6 |
[1] |
GAO Y, MA S W, LIU J J, et al. Fusion of medical images based on salient features extraction by PSO optimized fuzzy logic in NSST domain[J]. Biomedical Signal Processing and Control, 2021, 69: 102852.
DOI URL |
[2] | 朱积成, 刘慧, 李珊珊, 等. 结合局部熵与梯度能量的双通道医学图像融合[J/OL]. 计算机辅助设计与图形学学报. [2023-06-18]. https://www.jcad.cn/cn/search. |
ZHU J C, LIU H, LI S S, et al. Two-channel Medical Image Fusion Combining Local Entropy and Gradient Energy[J/OL]. Journal of Computer-Aided Design & Computer Graphics. [2023-06-18]. https://www.jcad.cn/cn/search. (in Chinese). | |
[3] | XU Z Q J, ZHANG Y Y, XIAO Y Y. Training behavior of deep neural network in frequency domain[C]// International Conference on Neural Information Processing. Cham: Springer, 2019: 264-274. |
[4] |
WANG K P, ZHENG M Y, WEI H Y, et al. Multi-modality medical image fusion using convolutional neural network and contrast pyramid[J]. Sensors, 2020, 20(8): 2169.
DOI URL |
[5] |
HERMESSI H, MOURALI O, ZAGROUBA E. Convolutional neural network-based multimodal image fusion via similarity learning in the shearlet domain[J]. Neural Computing and Applications, 2018, 30(7): 2029-2045.
DOI |
[6] |
JOSE J, GAUTAM N, TIWARI M, et al. An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion[J]. Biomedical Signal Processing and Control, 2021, 66: 102480.
DOI URL |
[7] | ZHAO C, YANG P, ZHOU F, et al. MHW-GAN: multidiscriminator hierarchical wavelet generative adversarial network for multimodal image fusion[J/OL]. IEEE Transactions on Neural Networks and Learning Systems. [2023-06-19]. https://ieeexplore.ieee.org/document/10177917. |
[8] |
LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207.
DOI URL |
[9] |
DENG X, DRAGOTTI P L. Deep convolutional neural network for multi-modal image restoration and fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3333-3348.
DOI URL |
[10] | LI S S, ZOU Y H, WANG G J, et al. Infrared and visible image fusion method based on principal component analysis network and multi-scale morphological gradient[J]. Infrared Physics & Technology, 2023, 133: 104810. |
[11] |
XU H, MA J Y. EMFusion: an unsupervised enhanced medical image fusion network[J]. Information Fusion, 2021, 76: 177-186.
DOI URL |
[12] | MA J Y, YU W, LIANG P W, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48(C): 11-26. |
[13] |
ZHANG Y, LIU Y, SUN P, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118.
DOI URL |
[14] | LAHOUD F, SÜSSTRUNK S. Zero-learning fast medical image fusion[C]// 2019 22th International Conference on Information Fusion. New York: IEEE Press, 2020: 1-8. |
[15] | LIU H, LI S S, ZHU J C, et al. DDIFN: a dual-discriminator multi-modal medical image fusion network[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 19(4): 145:1-145:17. |
[16] | ZOPH B, GHIASI G, LIN T Y, et al. Rethinking pre-training and self-training[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 3833-3845. |
[17] | 杜鹏飞, 李小勇, 高雅丽. 多模态视觉语言表征学习研究综述[J]. 软件学报, 2021, 32(2): 327-348. |
DU P F, LI X Y, GAO Y L. Survey on multimodal visual language representation learning[J]. Journal of Software, 2021, 32(2): 327-348 (in Chinese). | |
[18] | KORNBLITH S, SHLENS J, LE Q V. Do better ImageNet models transfer better?[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2656-2666. |
[19] | HENDRYCKS D, LEE K, MAZEIKA M. Using pre-training can improve model robustness and uncertainty[EB/OL]. [2023-06-18]. https://arxiv.org/abs/1901.09960.pdf. |
[20] | 刘慧, 李珊珊, 高珊珊, 等. 预训练模型特征提取的双对抗磁共振图像融合网络研究[J]. 软件学报, 2023, 34(5): 2134-2151. |
LIU H, LI S S, GAO S S, et al. Research on dual-adversarial MR image fusion network using pre-trained model for feature extraction[J]. Journal of Software, 2023, 34(5): 2134-2151 (in Chinese). | |
[21] | 王军敏, 樊养余, 李祖贺. 基于深度卷积神经网络和迁移学习的纹理图像识别[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 701-710. |
WANG J M, FAN Y Y, LI Z H. Texture image recognition based on deep convolutional neural network and transfer learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 701-710 (in Chinese). | |
[22] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[23] | MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB/OL]. [2023-06-18]. https://arxiv.org/abs/1406.6247.pdf. |
[24] | WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6450-6458. |
[25] | 金燕, 薛智中, 姜智伟. 基于循环残差卷积神经网络的医学图像分割算法[J]. 计算机辅助设计与图形学学报, 2022, 34(8): 1205-1215. |
JIN Y, XUE Z Z, JIANG Z W. Medical image segmentation based on recurrent residual convolution neural network[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(8): 1205-1215 (in Chinese). | |
[26] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[27] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
DOI URL |
[28] |
JAGALINGAM P, HEGDE A V. A review of quality metrics for fused image[J]. Aquatic Procedia, 2015, 4: 133-142.
DOI URL |
[29] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
DOI URL |
[30] |
QU G H, ZHANG D L, YAN P F. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
DOI URL |
[31] |
ASUERO A, SAYAGO A, GONZÁLEZ A G. The correlation coefficient: an overview[J]. Critical Reviews in Analytical Chemistry, 2006, 36: 41-59.
DOI URL |
[32] |
HAN Y, CAI Y Z, CAO Y, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127-135.
DOI URL |
[33] |
TAN W, THITØN W, XIANG P, et al. Multi-modal brain image fusion based on multi-level edge-preserving filtering[J]. Biomedical Signal Processing and Control, 2021, 64: 102280.
DOI URL |
[1] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[2] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[3] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[4] | ZHU Guanghui, MIAO Jun, HU Hongli, SHEN Ji, DU Ronghua. 3D piece-wise planar reconstruction from a single indoor image based on self-augmented -attention mechanism [J]. Journal of Graphics, 2024, 45(3): 464-471. |
[5] | WANG Zhiru, CHANG Yuan, LU Peng, PAN Chengwei. A review on neural radiance fields acceleration [J]. Journal of Graphics, 2024, 45(1): 1-13. |
[6] | LI Jiaqi, WANG Hui, GUO Yu. Classification and segmentation network based on Transformer for triangular mesh [J]. Journal of Graphics, 2024, 45(1): 78-89. |
[7] | HAN Yazhen, YIN Mengxiao, MA Weizhao, YANG Shigeng, HU Jinfei, ZHU Congyang. DGOA: point cloud upsampling based on dynamic graph and offset attention [J]. Journal of Graphics, 2024, 45(1): 219-229. |
[8] | WANG Jiang’an, HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian. Dense point cloud reconstruction network based on adaptive aggregation recurrent recursion [J]. Journal of Graphics, 2024, 45(1): 230-239. |
[9] | ZHOU Rui-chuang, TIAN Jin, YAN Feng-ting, ZHU Tian-xiao, ZHANG Yu-jin. Point cloud classification model incorporating external attention and graph convolution [J]. Journal of Graphics, 2023, 44(6): 1162-1172. |
[10] | WANG Ji, WANG Sen, JIANG Zhi-wen, XIE Zhi-feng, LI Meng-tian. Zero-shot text-driven avatar generation based on depth-conditioned diffusion model [J]. Journal of Graphics, 2023, 44(6): 1218-1226. |
[11] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[12] | DANG Hong-she, XU Huai-biao, ZHANG Xuan-de. Deep learning stereo matching algorithm fusing structural information [J]. Journal of Graphics, 2023, 44(5): 899-906. |
[13] | ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion [J]. Journal of Graphics, 2023, 44(5): 918-927. |
[14] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. |
[15] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||