Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 90-101.DOI: 10.11996/JG.j.2095-302X.2024010090
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHAI Yongjie(), ZHAO Xiaoyu, WANG Luyao, WANG Yaru(
), SONG Xiaoke, ZHU Haoshuo
Received:
2023-08-11
Accepted:
2023-10-31
Online:
2024-02-29
Published:
2024-02-29
Contact:
WANG Yaru (1990-), lecturer, Ph.D. Her main research interests cover pattern recognition, data mining, detection of transmission line components, etc. E-mail:About author:
ZHAI Yongjie (1972-), professor, Ph.D. His main research interest covers power vision. E-mail:zhaiyongjie@ncepu.edu.cn
Supported by:
CLC Number:
ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines[J]. Journal of Graphics, 2024, 45(1): 90-101.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010090
硬件名称 | 型号 | 数量 |
---|---|---|
CPU | Intel(R) Core(TM) i9-10850K | 1 |
内存 | 金士顿 16 G DDR4 | 2 |
显卡 | GeForce RTX 2080ti | 1 |
硬盘 | 西数10 TB | 1 |
Table 1 Experimental hardware environment
硬件名称 | 型号 | 数量 |
---|---|---|
CPU | Intel(R) Core(TM) i9-10850K | 1 |
内存 | 金士顿 16 G DDR4 | 2 |
显卡 | GeForce RTX 2080ti | 1 |
硬盘 | 西数10 TB | 1 |
模型 | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | Param/ M | GFLOPs/ G |
---|---|---|---|---|---|---|
SE | 95.3 | 78.5 | 77.9 | 83.9 | 37.9 | 105.7 |
CBAM | 97.0 | 76.2 | 77.4 | 83.5 | 37.3 | 105.2 |
CA | 97.2 | 80.2 | 76.8 | 84.7 | 37.2 | 105.2 |
Table 2 Comparison of different attention performances
模型 | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | Param/ M | GFLOPs/ G |
---|---|---|---|---|---|---|
SE | 95.3 | 78.5 | 77.9 | 83.9 | 37.9 | 105.7 |
CBAM | 97.0 | 76.2 | 77.4 | 83.5 | 37.3 | 105.2 |
CA | 97.2 | 80.2 | 76.8 | 84.7 | 37.2 | 105.2 |
超参数γ | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % |
---|---|---|---|---|
0 | 96.6 | 78.0 | 71.9 | 82.2 |
0.25 | 96.5 | 76.8 | 75.3 | 82.7 |
0.5 | 97.4 | 78.2 | 76.4 | 84.0 |
0.75 | 97.6 | 76.9 | 75.8 | 83.4 |
1 | 96.8 | 77.1 | 74.6 | 82.8 |
Table 3 Performance comparison of different hyperparameters
超参数γ | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % |
---|---|---|---|---|
0 | 96.6 | 78.0 | 71.9 | 82.2 |
0.25 | 96.5 | 76.8 | 75.3 | 82.7 |
0.5 | 97.4 | 78.2 | 76.4 | 84.0 |
0.75 | 97.6 | 76.9 | 75.8 | 83.4 |
1 | 96.8 | 77.1 | 74.6 | 82.8 |
实验 | C3GhostNetV2 | CA | Focal-CIoU | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | 查准率/ % | 召回率/ % | 参数量/ M | GFLOPs/ G |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 96.6 | 78.0 | 71.9 | 82.2 | 86.7 | 76.6 | 37.2 | 105.1 | |||
2 | √ | 96.8 | 77.4 | 74.6 | 82.9 | 87.3 | 83.3 | 30.3 | 90.3 | ||
3 | √ | 97.2 | 80.2 | 76.8 | 84.7 | 87.2 | 83.1 | 37.2 | 105.2 | ||
4 | √ | 97.4 | 78.2 | 76.4 | 84.0 | 88.7 | 83.2 | 37.2 | 105.1 | ||
5 | √ | √ | 96.9 | 79.9 | 77.5 | 84.8 | 88.1 | 82.8 | 30.4 | 90.4 | |
6 | √ | √ | √ | 97.4 | 82.5 | 78.2 | 86.0 | 88.4 | 84.2 | 30.4 | 90.4 |
Table 4 Comparison of ablation experiment results of YOLOv7 improved model
实验 | C3GhostNetV2 | CA | Focal-CIoU | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | 查准率/ % | 召回率/ % | 参数量/ M | GFLOPs/ G |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 96.6 | 78.0 | 71.9 | 82.2 | 86.7 | 76.6 | 37.2 | 105.1 | |||
2 | √ | 96.8 | 77.4 | 74.6 | 82.9 | 87.3 | 83.3 | 30.3 | 90.3 | ||
3 | √ | 97.2 | 80.2 | 76.8 | 84.7 | 87.2 | 83.1 | 37.2 | 105.2 | ||
4 | √ | 97.4 | 78.2 | 76.4 | 84.0 | 88.7 | 83.2 | 37.2 | 105.1 | ||
5 | √ | √ | 96.9 | 79.9 | 77.5 | 84.8 | 88.1 | 82.8 | 30.4 | 90.4 | |
6 | √ | √ | √ | 97.4 | 82.5 | 78.2 | 86.0 | 88.4 | 84.2 | 30.4 | 90.4 |
Fig. 6 Heat map visual comparison results ((a) Drope scenario 1; (b) Drope scenario 2; (c) Damage scenario 1; (d) Damage scenario 2; (e) Flashover scenario 1; (f) Fashover scenario 2)
损失函数 | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | mAP50:95/ % |
---|---|---|---|---|---|
Focal-DIoU | 96.5 | 79.0 | 73.2 | 82.9 | 50.7 |
Focal-GIoU | 96.6 | 79.8 | 72.7 | 83.0 | 49.6 |
Focal-EIoU | 97.2 | 77.1 | 76.1 | 83.5 | 51.2 |
Focal-CIoU | 97.4 | 78.2 | 76.4 | 84.0 | 51.5 |
Table 5 Comparison of different loss performance
损失函数 | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | mAP50:95/ % |
---|---|---|---|---|---|
Focal-DIoU | 96.5 | 79.0 | 73.2 | 82.9 | 50.7 |
Focal-GIoU | 96.6 | 79.8 | 72.7 | 83.0 | 49.6 |
Focal-EIoU | 97.2 | 77.1 | 76.1 | 83.5 | 51.2 |
Focal-CIoU | 97.4 | 78.2 | 76.4 | 84.0 | 51.5 |
检测算法 | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | mAP50:95/ % |
---|---|---|---|---|---|
Faster R-CNN | 91.2 | 64.5 | 69.7 | 75.2 | 49.3 |
SSD | 84.6 | 54.3 | 35.4 | 58.1 | 44.5 |
YOLOv5 | 96.8 | 74.6 | 77.2 | 82.9 | 51.8 |
GBH-YOLOv5 | 96.3 | 79.9 | 73.0 | 83.1 | 50.5 |
TPH-YOLOv5 | 97.1 | 79.5 | 76.0 | 84.2 | 51.1 |
YOLOv7 | 96.6 | 78.0 | 71.9 | 82.2 | 51.1 |
YOLOv8 | 96.5 | 78.5 | 72.7 | 82.6 | 51.7 |
本文算法 | 97.4 | 82.5 | 78.2 | 86.0 | 52.8 |
Table 6 Performance comparison of different models
检测算法 | AP50 自爆 | AP50 破损 | AP50 闪络 | mAP50/ % | mAP50:95/ % |
---|---|---|---|---|---|
Faster R-CNN | 91.2 | 64.5 | 69.7 | 75.2 | 49.3 |
SSD | 84.6 | 54.3 | 35.4 | 58.1 | 44.5 |
YOLOv5 | 96.8 | 74.6 | 77.2 | 82.9 | 51.8 |
GBH-YOLOv5 | 96.3 | 79.9 | 73.0 | 83.1 | 50.5 |
TPH-YOLOv5 | 97.1 | 79.5 | 76.0 | 84.2 | 51.1 |
YOLOv7 | 96.6 | 78.0 | 71.9 | 82.2 | 51.1 |
YOLOv8 | 96.5 | 78.5 | 72.7 | 82.6 | 51.7 |
本文算法 | 97.4 | 82.5 | 78.2 | 86.0 | 52.8 |
Fig. 9 Visual comparison results of different models ((a) Drope scenario 1; (b) Drope scenario 2; (c) Damage scenario 1; (d) Damage scenario 2; (e) Flashover scenario 1; (f) Flashover scenario 2)
检测算法 | 正常图像mAP50 | 暗化图像mAP50 | 增亮图像mAP50 | 有雾图像mAP50 | 有雨图像mAP50 |
---|---|---|---|---|---|
Faster R-CNN | 75.2 | 66.1 | 68.3 | 69.8 | 67.0 |
SSD | 58.1 | 54.5 | 53.0 | 50.9 | 51.9 |
YOLOv5 | 82.9 | 81.8 | 78.2 | 81.5 | 81.4 |
GBH-YOLOv5 | 83.1 | 81.1 | 78.9 | 80.2 | 81.2 |
TPH-YOLOv5 | 84.2 | 82.9 | 79.4 | 82.2 | 82.4 |
YOLOv7 | 82.2 | 80.7 | 78.3 | 80.9 | 80.8 |
YOLOv8 | 82.6 | 81.3 | 79.2 | 81.2 | 81.7 |
本文算法 | 86.0 | 84.9 | 83.3 | 84.9 | 85.3 |
Table 7 Performance comparison of different models in different environments/%
检测算法 | 正常图像mAP50 | 暗化图像mAP50 | 增亮图像mAP50 | 有雾图像mAP50 | 有雨图像mAP50 |
---|---|---|---|---|---|
Faster R-CNN | 75.2 | 66.1 | 68.3 | 69.8 | 67.0 |
SSD | 58.1 | 54.5 | 53.0 | 50.9 | 51.9 |
YOLOv5 | 82.9 | 81.8 | 78.2 | 81.5 | 81.4 |
GBH-YOLOv5 | 83.1 | 81.1 | 78.9 | 80.2 | 81.2 |
TPH-YOLOv5 | 84.2 | 82.9 | 79.4 | 82.2 | 82.4 |
YOLOv7 | 82.2 | 80.7 | 78.3 | 80.9 | 80.8 |
YOLOv8 | 82.6 | 81.3 | 79.2 | 81.2 | 81.7 |
本文算法 | 86.0 | 84.9 | 83.3 | 84.9 | 85.3 |
检测算法 | 暗化图像mAP50 | 增亮图像mAP50 | 有雾图像mAP50 | 有雨图像mAP50 |
---|---|---|---|---|
Faster R-CNN | 12.1 | 9.2 | 7.2 | 10.9 |
SSD | 6.2 | 8.8 | 12.4 | 10.7 |
YOLOv5 | 1.3 | 5.7 | 1.7 | 1.8 |
GBH-YOLOv5 | 2.4 | 5.1 | 3.5 | 2.3 |
TPH-YOLOv5 | 1.5 | 5.7 | 2.4 | 2.1 |
YOLOv7 | 1.8 | 4.7 | 1.6 | 1.7 |
YOLOv8 | 1.6 | 4.1 | 1.7 | 1.1 |
本文算法 | 1.3 | 3.1 | 1.3 | 0.8 |
Table 8 Different models in different environments mAP50 drop percentage/%
检测算法 | 暗化图像mAP50 | 增亮图像mAP50 | 有雾图像mAP50 | 有雨图像mAP50 |
---|---|---|---|---|
Faster R-CNN | 12.1 | 9.2 | 7.2 | 10.9 |
SSD | 6.2 | 8.8 | 12.4 | 10.7 |
YOLOv5 | 1.3 | 5.7 | 1.7 | 1.8 |
GBH-YOLOv5 | 2.4 | 5.1 | 3.5 | 2.3 |
TPH-YOLOv5 | 1.5 | 5.7 | 2.4 | 2.1 |
YOLOv7 | 1.8 | 4.7 | 1.6 | 1.7 |
YOLOv8 | 1.6 | 4.1 | 1.7 | 1.1 |
本文算法 | 1.3 | 3.1 | 1.3 | 0.8 |
Fig. 10 Visualization results of simulated different natural environments ((a) Drope scenario 1; (b) Drope scenario 2; (c) Damage scenario 1; (d) Damage scenario 2; (e) Flashover scenario 1; (f) Flashover scenario 2)
检测算法 | AP50 飞机 | AP50 油桶 | AP50 立交桥 | AP50 操场 | mAP50/ % |
---|---|---|---|---|---|
Faster R-CNN | 92.1 | 97.4 | 74.2 | 99.3 | 90.8 |
SSD | 75.1 | 95.1 | 80.8 | 99.6 | 87.7 |
YOLOv5 | 94.5 | 97.4 | 91.0 | 99.2 | 95.5 |
GBH-YOLOv5 | 94.6 | 96.9 | 89.3 | 99.3 | 95.0 |
TPH-YOLOv5 | 94.4 | 97.5 | 93.1 | 99.2 | 96.1 |
YOLOv7 | 94.0 | 96.8 | 93.8 | 98.9 | 95.9 |
YOLOv8 | 93.4 | 97.0 | 93.7 | 98.7 | 95.7 |
本文算法 | 95.5 | 98.5 | 95.3 | 99.8 | 97.3 |
Table 9 Comparison of performance of different models on RSOD dataset
检测算法 | AP50 飞机 | AP50 油桶 | AP50 立交桥 | AP50 操场 | mAP50/ % |
---|---|---|---|---|---|
Faster R-CNN | 92.1 | 97.4 | 74.2 | 99.3 | 90.8 |
SSD | 75.1 | 95.1 | 80.8 | 99.6 | 87.7 |
YOLOv5 | 94.5 | 97.4 | 91.0 | 99.2 | 95.5 |
GBH-YOLOv5 | 94.6 | 96.9 | 89.3 | 99.3 | 95.0 |
TPH-YOLOv5 | 94.4 | 97.5 | 93.1 | 99.2 | 96.1 |
YOLOv7 | 94.0 | 96.8 | 93.8 | 98.9 | 95.9 |
YOLOv8 | 93.4 | 97.0 | 93.7 | 98.7 | 95.7 |
本文算法 | 95.5 | 98.5 | 95.3 | 99.8 | 97.3 |
[1] |
OGBONNA V E, POPOOLA P I, POPOOLA O M, et al. A comparative study on the failure analysis of field failed high voltage composite insulator core rods and recommendation of composite insulators: a review[J]. Engineering Failure Analysis, 2022, 138: 106369.
DOI URL |
[2] |
张新春, 曹应平, 韩春雨, 等. 基于图像处理的输电线路导线表面损伤特征研究[J]. 图学学报, 2018, 39(3): 440-447.
DOI |
ZHANG X C, CAO Y P, HAN C Y, et al. On the surface damage features of transmission line conductors based on image processing[J]. Journal of Graphics, 2018, 39(3): 440-447 (in Chinese).
DOI |
|
[3] | 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. |
ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560 (in Chinese). | |
[4] |
PARK K C, MOTAI Y, YOON J R. Acoustic fault detection technique for high-power insulators[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9699-9708.
DOI URL |
[5] | 高文婷, 刘越. 面向移动增强现实的实时深度学习目标检测方法综述[J]. 图学学报, 2021, 42(4): 525-534. |
GAO W T, LIU Y. Review of real-time deep learning-based object detection for mobile augmented reality[J]. Journal of Graphics, 2021, 42(4): 525-534 (in Chinese). | |
[6] | 冯晗, 姜勇. 使用改进Yolov5的变电站绝缘子串检测方法[J]. 智能系统学报, 2023, 18(2): 325-332. |
FENG H, JIANG Y. A substation insulator string detection method based on an improved Yolov5[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2): 325-332 (in Chinese). | |
[7] | 贾晓芬, 于业齐, 郭永存, 等. 航拍绝缘子自爆缺陷的轻量化检测方法[J]. 高电压技术, 2023, 49(1): 294-300. |
JIA X F, YU Y Q, GUO Y C, et al. Lightweight detection method of self-explosion defect of aerial photo insulator[J]. High Voltage Engineering, 2023, 49(1): 294-300 (in Chinese). | |
[8] |
LI X F, SU H S, LIU G H. Insulator defect recognition based on global detection and local segmentation[J]. IEEE Access, 2020, 8: 59934-59946.
DOI URL |
[9] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[10] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
[11] |
TAO X, ZHANG D P, WANG Z H, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498.
DOI URL |
[12] | LIU J J, LIU C Y, WU Y Q, et al. Insulators' identification and missing defect detection in aerial images based on cascaded YOLO models[J]. Computational Intelligence and Neuroscience, 2022, 2022: 7113765. |
[13] |
ZHAO Z B, ZHEN Z, ZHANG L, et al. Insulator detection method in inspection image based on improved faster R-CNN[J]. Energies, 2019, 12(7): 1204.
DOI URL |
[14] | 宋智伟, 黄新波, 纪超, 等. 基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法[J]. 高电压技术, 2023, 49(12): 5084-5094. |
SONG Z W, HUANG X B, JI C, et al. Insulator defect detection and fault warning method for transmisson line based on Flexible YOLOv7[J]. High Voltage Engineering, 2023, 49(12): 5084-5094 (in Chinese). | |
[15] | 翟永杰, 杨珂, 王乾铭, 等. 基于混合样本迁移学习的盘型绝缘子缺陷检测[J]. 中国电机工程学报, 2023, 43(7): 2867-2877. |
ZHAI Y J, YANG K, WANG Q M, et al. Disc insulator defect detection based on mixed sample transfer learning[J]. Proceedings of the CSEE, 2023, 43(7): 2867-2877 (in Chinese). | |
[16] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[17] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[18] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[19] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717. |
[20] |
CHEN B Y, DANG Z C. Fast PCB defect detection method based on FasterNet backbone network and CBAM attention mechanism integrated with feature fusion module in improved YOLOv7[J]. IEEE Access, 2023, 11: 95092-95103.
DOI URL |
[21] | TANG Y H, HAN K, GUO J Y, et al. GhostNetV2: enhance cheap operation with long-range attention[EB/OL]. [2023-06-19]. https://arxiv.org/abs/2211.12905.pdf. |
[22] |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
DOI URL |
[23] | LIU S J, ZHOU H B, LI C M, et al. Analysis of anchor-based and anchor-free object detection methods based on deep learning[C]// 2020 IEEE International Conference on Mechatronics and Automation. New York: IEEE Press, 2020: 1058-1065. |
[24] |
LIU Y, LIU D, HUANG X, et al. Insulator defect detection with deep learning: A survey[J]. IET Generation, Transmission & Distribution, 2023, 17(16): 3541-3558..
DOI URL |
[25] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 618-626. |
[26] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 658-666. |
[27] |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
DOI URL |
[28] |
LI L L, WANG Z F, ZHANG T T. GBH-YOLOv5: ghost convolution with BottleneckCSP and tiny target prediction head incorporating YOLOv5 for PV panel defect detection[J]. Electronics, 2023, 12(3): 561.
DOI URL |
[29] | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 2778-2788. |
[30] |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
DOI URL |
[1] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[2] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[3] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[4] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[5] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[6] | ZHU Qiangjun, HU Bin, WANG Huilan, WANG Yang. Detection of traffic signs based on lightweight YOLOv8s [J]. Journal of Graphics, 2024, 45(3): 422-432. |
[7] | LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s [J]. Journal of Graphics, 2024, 45(3): 433-445. |
[8] | ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(3): 446-453. |
[9] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[10] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[11] | LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception [J]. Journal of Graphics, 2024, 45(2): 250-258. |
[12] | GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua. Human action recognition algorithm based on semantics guided neural networks [J]. Journal of Graphics, 2024, 45(1): 26-34. |
[13] | YUAN Chao, ZHAO Yadong, ZHANG Yao, WANG Jiaxuan, XU Dawei, ZHAI Yongjie, ZHU Songsong. Lightweight multi-modal pedestrian detection algorithm based on YOLO [J]. Journal of Graphics, 2024, 45(1): 35-46. |
[14] | GU Tianjun, XIONG Suya, LIN Xiao. Diversified generation of theatrical masks based on SASGAN [J]. Journal of Graphics, 2024, 45(1): 102-111. |
[15] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||