Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 126-138.DOI: 10.11996/JG.j.2095-302X.2024010126
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHOU Leijing(), ZHANG Yuxin, LEI Rui, SHEN Aoyi
Received:
2023-06-29
Accepted:
2023-10-30
Online:
2024-02-29
Published:
2024-02-29
About author:
ZHOU Leijing (1987-), associate researcher, Ph.D. Her main research interests cover digital art and artificial intelligence. E-mail:leijing@zju.edu.cn
Supported by:
CLC Number:
ZHOU Leijing, ZHANG Yuxin, LEI Rui, SHEN Aoyi. Research on stylization method of copper chiseling paper-cutting[J]. Journal of Graphics, 2024, 45(1): 126-138.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010126
Fig. 7 Copper chiseling paper-cutting line style diagram, target content diagram and copper chiseling paper-cutting style line diagram ((a) Style map; (b) Target content map; (c) Copper chiseling paper-cutting style line diagram)
Fig. 14 Copper chiseling paper-cutting stylized design tool generates images ((a) Original drawing; (b) Line draft; (c) Chiseling drawing; (d) Copper chisel paper cuttings effect drawing)
Fig. 18 Stylized renderings of copper chisel paper cuttings using images with different color styles ((a), (c), (e) Color style picture; (b), (d), (f) Effect picture)
Fig. 19 The processing effect of different types of images ((a) Original; (b) Color style diagram; (c) Line draft; (d) Chisel point diagram; (e) Copper chiseling paper-cutting effect diagram)
图像名称 | 图像尺寸 | 处理时间/s |
---|---|---|
雏菊 | 720×1280 | 27.67 |
蝴蝶兰 | 658×1002 | 16.50 |
鹦鹉 | 564×846 | 8.77 |
兔子 | 600×388 | 5.92 |
天坛 | 800×534 | 9.65 |
墙面 | 800×533 | 12.34 |
Table 1 Processing time of each image
图像名称 | 图像尺寸 | 处理时间/s |
---|---|---|
雏菊 | 720×1280 | 27.67 |
蝴蝶兰 | 658×1002 | 16.50 |
鹦鹉 | 564×846 | 8.77 |
兔子 | 600×388 | 5.92 |
天坛 | 800×534 | 9.65 |
墙面 | 800×533 | 12.34 |
Fig. 20 Comparison between the results of this article and those of other methods ((a) Original image; (b) Based on the method proposed in this paper; (c) Ref [8]; (d) StyTr2[12]; (e) IEST[11]; (f) MCCNet[9]; (g) ArtFlow[10])
Fig. 22 Comparative display of local details ((a) Original image; (b) Based on the method proposed in this paper; (c) Ref[8]; (d) StyTr2[12]; (e) IEST[11]; (f) MCCNet[9]; (g) ArtFlow[10])
评估指标 | 平均得分 | 方差 |
---|---|---|
线稿质量 | 4.32 | 0.51 |
凿点图质量 | 3.82 | 0.54 |
铜凿剪纸效果图风格迁移效果 | 4.41 | 0.34 |
铜凿剪纸效果图美观性 | 4.41 | 0.54 |
Table 2 Experimental evaluation indicators and average scores
评估指标 | 平均得分 | 方差 |
---|---|---|
线稿质量 | 4.32 | 0.51 |
凿点图质量 | 3.82 | 0.54 |
铜凿剪纸效果图风格迁移效果 | 4.41 | 0.34 |
铜凿剪纸效果图美观性 | 4.41 | 0.54 |
[1] | 王瑞. 佛山铜凿剪纸艺术的多元文化传承与保护研究[D]. 广州: 广东技术师范大学, 2020. |
WANG R. Research on multicultural inheritance and protection of Foshan copper chisel paper cutting[D]. Guangzhou: Guangdong Polytechnic Normal University, 2020 (in Chinese). | |
[2] | 谭斯晨. 岭南佛山剪纸艺术形态及其设计应用研究[D]. 长沙: 湖南师范大学, 2020. |
TAN S C. Study on the art form and design application of paper cutting in Foshan, Lingnan[D]. Changsha: Hunan Normal University, 2020 (in Chinese). | |
[3] | 陈婉. 中国民间剪纸的三大流派[J]. 公共艺术, 2010(1): 36-38. |
CHEN W. The major three schools of the Chinese Folk Paper-cut[J]. Public Art, 2010(1): 36-38 (in Chinese). | |
[4] | 王珂. 佛山铜凿剪纸的民俗成因及装饰特征探析[J]. 艺苑, 2021(5): 85-89. |
WANG K. Analysis on the folk causes and decorative features of Foshan copper chisel paper-cut[J]. Forum of Arts, 2021(5): 85-89 (in Chinese). | |
[5] | 武改朝. 不同材质“剪纸范儿”技艺教学内容分析[J]. 教育现代化, 2018, 5(34): 366-367. |
WU G C /Z. Analysis of teaching content of “paper-cut style” skills with different materials[J]. Education Modernization, 2018, 5(34): 366-367 (in Chinese). | |
[6] | 陈佳舟, 王宇航, Amal Ahmed Hasan Mohammed, 等. 基于图像的二维剪纸自动生成方法[J]. 浙江大学学报: 理学版, 2020, 47(3): 274-283. |
CHEN J Z, WANG Y H, MOHAMMED A A H, et al. Image-based automatic generation of 2D paper-cuts[J]. Journal of Zhejiang University: Science Edition, 2020, 47(3): 274-283 (in Chinese). | |
[7] |
王晓宇, 赵妍, 刘泽云, 等. 基于五官特征的人脸剪纸生成方法研究[J]. 计算机工程与应用, 2018, 54(17): 208-213.
DOI |
WANG X Y, ZHAO Y, LIU Z Y, et al. Portrait paper-cut synthetic method based on facial features[J]. Computer Engineering and Applications, 2018, 54(17): 208-213 (in Chinese).
DOI |
|
[8] | GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[EB/OL]. [2023-05-12]. https://arxiv.org/abs/1508.06576.pdf. |
[9] | DENG Y Y, TANG F, DONG W M, et al. Arbitrary video style transfer via multi-channel correlation[EB/OL]. [2023-05-12]. https://arxiv.org/abs/2009.08003.pdf. |
[10] | AN J, HUANG S Y, SONG Y B, et al. ArtFlow: unbiased image style transfer via reversible neural flows[C]// 2021 IEEE/CVF Conferences on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 862-871. |
[11] | CHEN H, ZHAO L, WANG Z, et al. Artistic style transfer with internal-external learning and contrastive learning[EB/OL]. [2023-05-12]. https://proceedings.neurips.cc/paper_files/paper/2021/hash/df5354693177e83e8ba089e94b7b6b55-Abstract.html. |
[12] | DENG Y Y, TANG F, DONG W M, et al. StyTr2: image style transfer with transformers[C]// 2022 IEEE/CVF Conferences on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 11316-11326. |
[13] | LIU E M, LIU L J, WANG J H, et al. Int-Papercut: an intelligent pattern generation with papercut style based on convolutional neural network[C]// The 15th IEEE Conference on Industrial Electronics and Applications. New York: IEEE Press, 2020: 59-67. |
[14] | 姚超, 刘桂华, 赵森, 等. 基于卷积神经网络的人物剪纸设计[J]. 传感器与微系统, 2021, 40(7): 88-91. |
YAO C, LIU G H, ZHAO S, et al. Character paper-cutting design based on convolutional neural network[J]. Transducer and Microsystem Technologies, 2021, 40(7): 88-91 (in Chinese). | |
[15] | 乔锦浩, 肖懿, 崔誉丹, 等. 特定风格剪纸艺术的智能生成[J]. 包装工程, 2021, 42(14): 74-80, 91. |
QIAO J H, XIAO Y, CUI Y D, et al. Intelligent generation for specific style of paper-cutting art[J]. Packaging Engineering, 2021, 42(14): 74-80, 91 (in Chinese). | |
[16] | 张显全, 于金辉, 蒋凌琳, 等. 基于纹样的计算机剪纸系统[J]. 计算机工程, 2006, 32(11): 248-250. |
ZHANG X Q, YU J H, JIANG L L, et al. Computer paper cut-out system based on decorative pattern[J]. Computer Engineering, 2006, 32(11): 248-250 (in Chinese). | |
[17] | LI X P. Visualization display system of Gannan hakka paper-cut works based on computer graphics algorithm[J]. Computational Intelligence and Neuroscience, 2022, 2022: 2419689. |
[18] | 窦宁, 万亮. 面向自然图像的年画风格化算法[J]. 计算机应用研究, 2016, 33(2): 636-640. |
DOU N, WAN L. New year painting stylization from images[J]. Application Research of Computers, 2016, 33(2): 636-640 (in Chinese). | |
[19] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-05-12]. https://arxiv.org/abs/1409.1556.pdf. |
[20] | 宋智礼, 张家齐, 熊亮, 等. 利用风格迁移和特征点的多模态图像配准算法[J]. 遥感信息, 2021, 36(1): 1-6. |
SONG Z L, ZHANG J Q, XIONG L, et al. Multimodal image registration algorithm using style transfer and feature points[J]. Remote Sensing Information, 2021, 36(1): 1-6 (in Chinese). | |
[21] | GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2414-2423. |
[22] | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Computer Vision - ECCV 2014. Cham: Springer International Publishing, 2014: 740-755. |
[1] | WU Zheng-cun, WU Tong, DUN Xiao-rong. Research on design method of Chengcheng embroidery style migration based on extension semantics [J]. Journal of Graphics, 2023, 44(5): 1041-1049. |
[2] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[3] | LI Xin, PU Yuan-yuan, ZHAO Zheng-peng, XU Dan, QIAN Wen-hua. Content semantics and style features match consistent artistic style transfer [J]. Journal of Graphics, 2023, 44(4): 699-709. |
[4] | DENG Wei-ming, YANG Tie-jun, LI Chun-chun, HUANG Lin. Object detection for nameplate based on neural architecture search [J]. Journal of Graphics, 2023, 44(4): 718-727. |
[5] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[6] | SHAN Fang-mei, WANG Meng-wen, LI Min. Multi-scale convolutional neural network incorporating attention mechanism for intestinal polyp segmentation [J]. Journal of Graphics, 2023, 44(1): 50-58. |
[7] | PAN Dong-hui, JIN Ying-han, SUN Xu, LIU Yu-sheng, ZHANG Dong-liang. CTH-Net: CNN-Transformer hybrid network for garment image generation from sketches and color points [J]. Journal of Graphics, 2023, 44(1): 120-130. |
[8] | ZHANG Dun, HUANG Zhi-kai, WANG Huan, WU Yi-peng, WANG Ying, ZOU Jia-hao . Research and application of wild mushrooms classification based on multi-scale features to realize hyperparameter evolution [J]. Journal of Graphics, 2022, 43(4): 580-589. |
[9] | LIAO Zhi-wei , JIN Jing , ZHANG Chao-fan, YANG Xue-zhi. Monocular depth estimation of ASPP networks based on hierarchical compress excitation [J]. Journal of Graphics, 2022, 43(2): 214-222. |
[10] | SU Chang-bao, GONG Shi-cai. Fully automatic matting algorithm for portraits based on deep learning [J]. Journal of Graphics, 2022, 43(2): 247-253. |
[11] | HE Guo-zhong, LIANG Yu. PCB defect detection based on convolutional neural network [J]. Journal of Graphics, 2022, 43(1): 21-27. |
[12] | ZHANG Cheng , HOU Yu-chao , JIAO Yu-qian , BAI Yan-ping , LI Jian-jun. Research on concrete image classification based on three-channel separation feature fusion and support vector machine [J]. Journal of Graphics, 2021, 42(6): 917-923. |
[13] | FENG Jun , ZHAO Ying , BI Jian-kang , LAI Bai-jiang , HU Jing-jing. Multi-level convolutional neural network for asphalt pavement crack image hierarchical filtering [J]. Journal of Graphics, 2021, 42(5): 719-728. |
[14] | ZHANG Ming-hua , NIU Yu-ying , DU Yan-ling , HUANG Dong-mei, LIU Ke-fu. Hyperspectral image classification based on residual 3DCNN and 3D Gabor filter [J]. Journal of Graphics, 2021, 42(5): 729-737. |
[15] | ZHANG Peng-fei , SHI Zhi-liang , LI Xiao-yao , OUYANG Xiang-bo . Classification algorithm of main bearing cap based on deep learning [J]. Journal of Graphics, 2021, 42(4): 572-580. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||