Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 199-208.DOI: 10.11996/JG.j.2095-302X.2024010199
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
ZHOU Jingyi(), ZHANG Qitong, FENG Jieqing(
)
Received:
2023-07-20
Accepted:
2023-12-13
Online:
2024-02-29
Published:
2024-02-29
Contact:
FENG Jieqing (1970-), professor, Ph.D. His main research interests cover graphics rendering, geometric modeling, stereo vision and modeling and simulation of solar thermal energy. E-mail:About author:
ZHOU Jingyi (1999-), master student. Her main research interest covers multi-view reconstruction. E-mail:22121273@zju.edu.cn
Supported by:
CLC Number:
ZHOU Jingyi, ZHANG Qitong, FENG Jieqing. Hybrid-structure based multi-view 3D scene reconstruction[J]. Journal of Graphics, 2024, 45(1): 199-208.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010199
Fig. 1 Four propagation schemes ((a) Sequential propagation; (b) Row/col propagation; (c) Black-red checkerboard propagation; (d) Adaptive checkerboard propagation)
算法 | fountain-P11 | HerzJesu-P8 | ||
---|---|---|---|---|
2 cm | 10 cm | 2 cm | 10 cm | |
COLMAP | 0.827 | 0.975 | 0.691 | 0.931 |
ACMH | 0.793 | 0.952 | 0.655 | 0.888 |
本文算法 | 0.801 | 0.956 | 0.710 | 0.903 |
Table 1 Percentage of pixels with absolute depth error below 2cm and 10cm of COLMAP[5]、ACMH[6] and our approach
算法 | fountain-P11 | HerzJesu-P8 | ||
---|---|---|---|---|
2 cm | 10 cm | 2 cm | 10 cm | |
COLMAP | 0.827 | 0.975 | 0.691 | 0.931 |
ACMH | 0.793 | 0.952 | 0.655 | 0.888 |
本文算法 | 0.801 | 0.956 | 0.710 | 0.903 |
参数 | 均值 | court. | deli. | electro | facade | kicker | mea. | office | pipes | play. | relief | relief. | terrace | terrain | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 cm | Acc. | COLMAP | 97.09 | 95.97 | 97.78 | 98.56 | 91.72 | 97.53 | 96.01 | 98.14 | 98.76 | 95.28 | 98.76 | 98.23 | 98.77 | 96.67 |
ACMH | 96.61 | 95.29 | 96.94 | 98.43 | 92.05 | 98.04 | 95.38 | 98.07 | 99.25 | 93.23 | 98.35 | 97.16 | 97.72 | 96.00 | ||
本文算法 | 96.74 | 96.48 | 97.72 | 98.82 | 93.44 | 97.64 | 91.51 | 97.44 | 98.59 | 94.79 | 98.54 | 98.02 | 98.86 | 95.83 | ||
Comp. | COLMAP | 69.91 | 86.44 | 82.76 | 76.59 | 76.46 | 63.82 | 50.92 | 45.60 | 49.13 | 65.87 | 74.96 | 74.45 | 86.30 | 75.57 | |
ACMH | 72.65 | 86.19 | 86.14 | 75.76 | 77.63 | 54.79 | 46.16 | 53.28 | 47.28 | 77.24 | 78.91 | 81.18 | 90.57 | 89.33 | ||
本文算法 | 75.88 | 87.62 | 83.49 | 81.45 | 79.47 | 70.37 | 65.93 | 50.81 | 53.81 | 79.79 | 78.43 | 79.42 | 89.04 | 86.93 | ||
F1 | COLMAP | 80.50 | 90.96 | 89.65 | 86.20 | 83.40 | 77.15 | 66.54 | 62.27 | 65.62 | 77.89 | 85.23 | 84.70 | 92.11 | 84.83 | |
ACMH | 81.86 | 90.51 | 91.22 | 85.62 | 84.23 | 70.29 | 62.21 | 69.04 | 64.05 | 84.48 | 87.57 | 88.45 | 94.01 | 92.54 | ||
本文算法 | 84.50 | 91.84 | 90.05 | 89.30 | 85.89 | 81.80 | 76.65 | 66.79 | 69.62 | 86.64 | 87.34 | 87.75 | 93.69 | 91.16 | ||
10 cm | Acc. | COLMAP | 98.75 | 99.14 | 98.79 | 99.30 | 97.67 | 98.33 | 97.82 | 99.20 | 99.18 | 98.76 | 99.27 | 98.96 | 99.29 | 98.03 |
ACMH | 98.75 | 98.86 | 99.01 | 99.58 | 98.10 | 98.67 | 97.30 | 99.18 | 99.42 | 98.40 | 99.19 | 98.86 | 98.99 | 98.19 | ||
本文算法 | 98.54 | 99.50 | 98.88 | 99.46 | 98.15 | 98.40 | 94.97 | 98.84 | 99.02 | 98.76 | 99.12 | 98.89 | 99.39 | 97.67 | ||
Comp. | COLMAP | 79.47 | 92.20 | 90.53 | 85.30 | 83.69 | 78.27 | 61.47 | 58.26 | 62.75 | 78.28 | 82.41 | 82.13 | 93.83 | 83.98 | |
ACMH | 79.27 | 89.52 | 90.40 | 80.45 | 79.77 | 69.54 | 54.85 | 64.83 | 56.16 | 83.94 | 84.58 | 86.01 | 95.41 | 95.03 | ||
本文算法 | 83.46 | 91.16 | 89.64 | 87.84 | 85.15 | 84.02 | 76.43 | 62.23 | 60.66 | 88.37 | 85.37 | 85.28 | 96.02 | 92.86 | ||
F1 | COLMAP | 87.61 | 95.54 | 94.48 | 91.77 | 90.14 | 87.16 | 75.50 | 73.41 | 76.86 | 87.33 | 90.05 | 89.76 | 96.48 | 90.46 | |
ACMH | 87.31 | 93.96 | 94.51 | 89.00 | 87.99 | 81.58 | 70.15 | 78.41 | 71.78 | 90.60 | 91.30 | 91.99 | 97.17 | 96.58 | ||
本文算法 | 90.01 | 95.15 | 94.04 | 93.29 | 91.19 | 90.64 | 84.70 | 76.37 | 75.24 | 93.27 | 91.73 | 91.59 | 97.68 | 95.20 |
Table 2 Accuracy(Acc.), completeness(Comp.), and F1 score at 5 cm and 10 cm thresholds of COLMAP[5], ACMH[6] and our approach
参数 | 均值 | court. | deli. | electro | facade | kicker | mea. | office | pipes | play. | relief | relief. | terrace | terrain | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 cm | Acc. | COLMAP | 97.09 | 95.97 | 97.78 | 98.56 | 91.72 | 97.53 | 96.01 | 98.14 | 98.76 | 95.28 | 98.76 | 98.23 | 98.77 | 96.67 |
ACMH | 96.61 | 95.29 | 96.94 | 98.43 | 92.05 | 98.04 | 95.38 | 98.07 | 99.25 | 93.23 | 98.35 | 97.16 | 97.72 | 96.00 | ||
本文算法 | 96.74 | 96.48 | 97.72 | 98.82 | 93.44 | 97.64 | 91.51 | 97.44 | 98.59 | 94.79 | 98.54 | 98.02 | 98.86 | 95.83 | ||
Comp. | COLMAP | 69.91 | 86.44 | 82.76 | 76.59 | 76.46 | 63.82 | 50.92 | 45.60 | 49.13 | 65.87 | 74.96 | 74.45 | 86.30 | 75.57 | |
ACMH | 72.65 | 86.19 | 86.14 | 75.76 | 77.63 | 54.79 | 46.16 | 53.28 | 47.28 | 77.24 | 78.91 | 81.18 | 90.57 | 89.33 | ||
本文算法 | 75.88 | 87.62 | 83.49 | 81.45 | 79.47 | 70.37 | 65.93 | 50.81 | 53.81 | 79.79 | 78.43 | 79.42 | 89.04 | 86.93 | ||
F1 | COLMAP | 80.50 | 90.96 | 89.65 | 86.20 | 83.40 | 77.15 | 66.54 | 62.27 | 65.62 | 77.89 | 85.23 | 84.70 | 92.11 | 84.83 | |
ACMH | 81.86 | 90.51 | 91.22 | 85.62 | 84.23 | 70.29 | 62.21 | 69.04 | 64.05 | 84.48 | 87.57 | 88.45 | 94.01 | 92.54 | ||
本文算法 | 84.50 | 91.84 | 90.05 | 89.30 | 85.89 | 81.80 | 76.65 | 66.79 | 69.62 | 86.64 | 87.34 | 87.75 | 93.69 | 91.16 | ||
10 cm | Acc. | COLMAP | 98.75 | 99.14 | 98.79 | 99.30 | 97.67 | 98.33 | 97.82 | 99.20 | 99.18 | 98.76 | 99.27 | 98.96 | 99.29 | 98.03 |
ACMH | 98.75 | 98.86 | 99.01 | 99.58 | 98.10 | 98.67 | 97.30 | 99.18 | 99.42 | 98.40 | 99.19 | 98.86 | 98.99 | 98.19 | ||
本文算法 | 98.54 | 99.50 | 98.88 | 99.46 | 98.15 | 98.40 | 94.97 | 98.84 | 99.02 | 98.76 | 99.12 | 98.89 | 99.39 | 97.67 | ||
Comp. | COLMAP | 79.47 | 92.20 | 90.53 | 85.30 | 83.69 | 78.27 | 61.47 | 58.26 | 62.75 | 78.28 | 82.41 | 82.13 | 93.83 | 83.98 | |
ACMH | 79.27 | 89.52 | 90.40 | 80.45 | 79.77 | 69.54 | 54.85 | 64.83 | 56.16 | 83.94 | 84.58 | 86.01 | 95.41 | 95.03 | ||
本文算法 | 83.46 | 91.16 | 89.64 | 87.84 | 85.15 | 84.02 | 76.43 | 62.23 | 60.66 | 88.37 | 85.37 | 85.28 | 96.02 | 92.86 | ||
F1 | COLMAP | 87.61 | 95.54 | 94.48 | 91.77 | 90.14 | 87.16 | 75.50 | 73.41 | 76.86 | 87.33 | 90.05 | 89.76 | 96.48 | 90.46 | |
ACMH | 87.31 | 93.96 | 94.51 | 89.00 | 87.99 | 81.58 | 70.15 | 78.41 | 71.78 | 90.60 | 91.30 | 91.99 | 97.17 | 96.58 | ||
本文算法 | 90.01 | 95.15 | 94.04 | 93.29 | 91.19 | 90.64 | 84.70 | 76.37 | 75.24 | 93.27 | 91.73 | 91.59 | 97.68 | 95.20 |
算法 | court. | deli. | electro | facade | kicker | meadow | office | pipes | play. | relief | relief. | terrace | terrain |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COLMAP | 71.10 | 83.47 | 88.73 | 153.62 | 59.00 | 24.88 | 50.44 | 24.44 | 69.95 | 65.75 | 62.80 | 42.25 | 88.36 |
ACMH | 17.69 | 15.96 | 20.55 | 40.46 | 18.59 | 5.79 | 9.78 | 3.64 | 14.61 | 17.55 | 21.02 | 9.23 | 24.40 |
本文算法 | 28.26 | 30.46 | 34.93 | 61.93 | 24.51 | 9.21 | 19.51 | 7.74 | 24.5 | 25.16 | 24.55 | 15.17 | 36.09 |
Table 3 Runtime comparison of COLMAP[5], ACMH[6] and our approach
算法 | court. | deli. | electro | facade | kicker | meadow | office | pipes | play. | relief | relief. | terrace | terrain |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COLMAP | 71.10 | 83.47 | 88.73 | 153.62 | 59.00 | 24.88 | 50.44 | 24.44 | 69.95 | 65.75 | 62.80 | 42.25 | 88.36 |
ACMH | 17.69 | 15.96 | 20.55 | 40.46 | 18.59 | 5.79 | 9.78 | 3.64 | 14.61 | 17.55 | 21.02 | 9.23 | 24.40 |
本文算法 | 28.26 | 30.46 | 34.93 | 61.93 | 24.51 | 9.21 | 19.51 | 7.74 | 24.5 | 25.16 | 24.55 | 15.17 | 36.09 |
Fig. 5 The trend of the percentage of pixels with error below 2 cm and 10 cm when the number of iterations increases ((a) Fountain with 2 cm error threshold; (b) Fountain with 10 cm error threshold; (c) Herzjesuwith 2 cm error threshold; (d) Herzjesuwith 10 cm error threshold)
[1] | CAMPBELL N D F, VOGIATZIS G, HERNÁNDEZ C, et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[C]// European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2008: 766-779. |
[2] | BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 28(3)Article No. 24, |
[3] |
SHEN S H. Accurate multiple view 3D reconstruction using patch-based stereo for large-scale scenes[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2013, 22(5): 1901-1914.
DOI URL |
[4] | ZHENG E L, DUNN E, JOJIC V, et al. PatchMatch based joint view selection and depthmap estimation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 1510-1517. |
[5] | SCHÖNBERGER J L, ZHENG E L, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]// European Conference on Computer Vision. Cham: Springer, 2016: 501-518. |
[6] | XU Q S, TAO W B. Multi-scale geometric consistency guided multi-view stereo[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5478-5487. |
[7] | SEITZ S M, CURLESS B, DIEBEL J, et al. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 519-528. |
[8] |
FURUKAWA Y, HERNÁNDEZ C. Multi-view stereo: a tutorial[J]. Foundations and Trends® in Computer Graphics and Vision, 2015, 9(1-2): 1-148.
DOI URL |
[9] | GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2016: 873-881. |
[10] | YAO Y, LUO Z X, LI S W, et al. MVSNet: depth inference for unstructured multi-view stereo[C]// European Conference on Computer Vision. Cham: Springer, 2018: 785-801. |
[11] | GU X D, FAN Z W, ZHU S Y, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2492-2501. |
[12] | WANG F, GALLIANI S, VOGEL C, et al. PatchmatchNet: learned multi-view patchmatch stereo[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, |
[13] | BISHOP C M, NASRABADI N M. Pattern Recognition and Machine Learning[M]// New York: Springer-Verlag Press, 2006: 531-537 |
[14] | NEAL R M, HINTON G E. A view of the em algorithm that justifies incremental, sparse, and other variants[M]//JORDAN MI. Learning in Graphical Models. Dordrecht: Springer, 1998: 355-368. |
[15] |
LIAO J E, FU Y P, YAN Q G, et al. Pyramid multi-view stereo with local consistency[J]. Computer Graphics Forum, 2019, 38(7): 335-346.
DOI |
[16] | SCHÖPS T, SATTLER T, POLLEFEYS M. BAD SLAM: bundle adjusted direct RGB-D SLAM[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 134-144. |
[17] | STRECHA C, VON HANSEN W, VAN GOOL L, et al. On benchmarking camera calibration and multi-view stereo for high resolution imagery[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2008: 1-8. |
[1] | HUANG Jiahui, MU Taijiang. A survey of dynamic 3D scene reconstruction [J]. Journal of Graphics, 2024, 45(1): 14-25. |
[2] | SHI Min, WANG Bingqi, LI Zhaoxin, ZHU Dengming. A seamless texture mapping method with highlight processing [J]. Journal of Graphics, 2024, 45(1): 148-158. |
[3] | WANG Jiang’an, HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian. Dense point cloud reconstruction network based on adaptive aggregation recurrent recursion [J]. Journal of Graphics, 2024, 45(1): 230-239. |
[4] | CHENG Huan, WANG Shuo, LI Meng, QIN Lun-ming, ZHAO Fang. A review of neural radiance field for autonomous driving scene [J]. Journal of Graphics, 2023, 44(6): 1091-1103. |
[5] | XUE Hao-wei, WANG Mei-li. Hand reconstruction incorporating biomechanical constraints and multi-modal data [J]. Journal of Graphics, 2023, 44(4): 794-800. |
[6] | WANG Jiang-an, PANG Da-wei, HUANG Le, QING Lin-zhen. Dense point cloud reconstruction network using multi-scale feature recursive convolution [J]. Journal of Graphics, 2022, 43(5): 875-883. |
[7] | CHEN Tian-xiang, CHEN Bin . A fast construction method of 6-DOF field virtual environment based on panoramic video image [J]. Journal of Graphics, 2022, 43(5): 901-908. |
[8] | BAI Jing, MENG Qing-liang, XU Hao, FAN You-fu, YANG Zhan-yuan. ST-Rec3D: a structure and target-aware 3D reconstruction [J]. Journal of Graphics, 2022, 43(3): 469-477. |
[9] | ZOU Xiao1, CHEN Zhengming1,2, ZHU Hongqiang1, TONG Jing1,2. Implementation and Application of 3D Virtual Hairstyle Try-on System Based on Mobile Platform [J]. Journal of Graphics, 2018, 39(2): 309-316. |
[10] | MIAO Yongwei1,2, FENG Xiaohong2, LIN Haibin2, ZHANG Xudong2, GAO Fei2. 2D to 3D: 3D Complex Mechanical Objects Generation from 2D Line Drawings [J]. Journal of Graphics, 2017, 38(2): 162-169. |
[11] | Sun Zheng. Review on Post-Processing of Intravascular Ultrasound Images [J]. Journal of Graphics, 2015, 36(3): 468-476. |
[12] | Sun Xiuen, Zhang Dianhua, Sun Xinping. Application of 3D Digital Reconstruction in the Repair of Bronze Ware [J]. Journal of Graphics, 2014, 35(6): 912-917. |
[13] | Li Xue, Gao Mantun, Zhao Jun. Review on Identifying Faces of Polyhedron Wireframe Models [J]. Journal of Graphics, 2014, 35(5): 663-668. |
[14] | Wu Zhanguo, Li hongxu. Computer-aided Graphics Reading System [J]. Journal of Graphics, 2013, 34(3): 162-164. |
[15] | ZHENG Peng-fei, LIN Da-jun, LIU Xiao-yang, WU Zhi-ting. 3D Object Reconstruction from Three Orthographic Views [J]. Journal of Graphics, 2011, 32(2): 49-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||