Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 913-921.DOI: 10.11996/JG.j.2095-302X.2024050913
• Image Processing and Computer Vision • Previous Articles Next Articles
LIU Yiyan1(), HAO Tingnan1, HE Chen2, CHANG Yingjie1(
)
Received:
2024-04-09
Revised:
2024-08-14
Online:
2024-10-31
Published:
2024-10-31
Contact:
CHANG Yingjie
About author:
First author contact:LIU Yiyan (1981-), associate professor, Ph.D. Her main research interests cover processing big data in power grids and analyzing power quality. E-mail:yyliu1@chd.edu.cn
Supported by:
CLC Number:
LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO[J]. Journal of Graphics, 2024, 45(5): 913-921.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024050913
配置环境 | 版本 |
---|---|
操作系统 | Windows 11 |
CPU | Intel(R) Core(TM) i7-13700KF |
显卡 | NVIDIA GeForce RTX 4090 24 GB |
深度学习框架 | Pytorch |
CUDA | CUDA 11.2 |
Python | Python-3.8.18 |
Table 1 Experimental environment configuration
配置环境 | 版本 |
---|---|
操作系统 | Windows 11 |
CPU | Intel(R) Core(TM) i7-13700KF |
显卡 | NVIDIA GeForce RTX 4090 24 GB |
深度学习框架 | Pytorch |
CUDA | CUDA 11.2 |
Python | Python-3.8.18 |
超参数 | 参数值 | 超参数 | 参数值 |
---|---|---|---|
Images size | 640 | Momentum | 0.937 |
Batch size | 32 | Epochs | 100 |
Learning rate | 0.01 | Optimizer | SGD |
Table 2 Experimental parameter settings
超参数 | 参数值 | 超参数 | 参数值 |
---|---|---|---|
Images size | 640 | Momentum | 0.937 |
Batch size | 32 | Epochs | 100 |
Learning rate | 0.01 | Optimizer | SGD |
Group | Model | 参数量/M | mAP50/% | mAP50:95/% | GFLOPs/G | FPS | F1 |
---|---|---|---|---|---|---|---|
1 | YOLOv8n | 3.1 | 89.4 | 66.2 | 8.1 | 166.2 | 0.84 |
2 | +C2f_DBB | 3.1 | 90.6 | 65.3 | 8.1 | 173.5 | 0.86 |
3 | +RepGDNeck | 5.9 | 91.1 | 66.8 | 10.2 | 108.2 | 0.88 |
4 | +C2f_DBB+RepGDNeck | 5.9 | 92.3 | 67.7 | 10.2 | 90.4 | 0.88 |
5 | +C2f_DBB+RepGDNeck+simAM | 5.9 | 93.1 | 68.2 | 10.2 | 158.0 | 0.89 |
Table 3 Melting experiment
Group | Model | 参数量/M | mAP50/% | mAP50:95/% | GFLOPs/G | FPS | F1 |
---|---|---|---|---|---|---|---|
1 | YOLOv8n | 3.1 | 89.4 | 66.2 | 8.1 | 166.2 | 0.84 |
2 | +C2f_DBB | 3.1 | 90.6 | 65.3 | 8.1 | 173.5 | 0.86 |
3 | +RepGDNeck | 5.9 | 91.1 | 66.8 | 10.2 | 108.2 | 0.88 |
4 | +C2f_DBB+RepGDNeck | 5.9 | 92.3 | 67.7 | 10.2 | 90.4 | 0.88 |
5 | +C2f_DBB+RepGDNeck+simAM | 5.9 | 93.1 | 68.2 | 10.2 | 158.0 | 0.89 |
Model | 参数量/M | mAP50/% | mAP50:95/% | GFLOPs/G | FPS | F1 |
---|---|---|---|---|---|---|
YOLOv8n | 3.1 | 89.4 | 66.2 | 8.1 | 166.2 | 0.84 |
+DAattent--ion | 3.3 | 91.9 | 68.5 | 8.3 | 91.0 | 0.88 |
+MLCA | 3.2 | 90.4 | 67.9 | 8.1 | 99.9 | 0.86 |
+CPCA | 4.0 | 91.7 | 68.2 | 8.3 | 150.5 | 0.88 |
+simAM | 3.1 | 91.9 | 69.0 | 8.3 | 159.8 | 0.88 |
Table 4 Attention mechanism comparison results
Model | 参数量/M | mAP50/% | mAP50:95/% | GFLOPs/G | FPS | F1 |
---|---|---|---|---|---|---|
YOLOv8n | 3.1 | 89.4 | 66.2 | 8.1 | 166.2 | 0.84 |
+DAattent--ion | 3.3 | 91.9 | 68.5 | 8.3 | 91.0 | 0.88 |
+MLCA | 3.2 | 90.4 | 67.9 | 8.1 | 99.9 | 0.86 |
+CPCA | 4.0 | 91.7 | 68.2 | 8.3 | 150.5 | 0.88 |
+simAM | 3.1 | 91.9 | 69.0 | 8.3 | 159.8 | 0.88 |
Model | 参数量/M | mAP50/% | mAP50:95/% | GFLOPs/G | FPS | F1 |
---|---|---|---|---|---|---|
YOLOv3n | 103.0 | 88.5 | 65.0 | 282.2 | 52.0 | 0.82 |
YOLOv5n | 2.5 | 89.0 | 66.0 | 7.1 | 168.9 | 0.83 |
YOLOv8m | 25.0 | 89.2 | 68.0 | 78.7 | 108.8 | 0.84 |
YOLOv8s | 11.1 | 89.4 | 67.5 | 28.4 | 151.0 | 0.84 |
YOLOv8n | 3.1 | 89.4 | 66.2 | 8.1 | 166.2 | 0.84 |
DBBR-YOLO (Ours) | 5.9 | 93.1 | 68.2 | 10.2 | 158.0 | 0.89 |
Table 5 YOLO algorithm comparative experiment
Model | 参数量/M | mAP50/% | mAP50:95/% | GFLOPs/G | FPS | F1 |
---|---|---|---|---|---|---|
YOLOv3n | 103.0 | 88.5 | 65.0 | 282.2 | 52.0 | 0.82 |
YOLOv5n | 2.5 | 89.0 | 66.0 | 7.1 | 168.9 | 0.83 |
YOLOv8m | 25.0 | 89.2 | 68.0 | 78.7 | 108.8 | 0.84 |
YOLOv8s | 11.1 | 89.4 | 67.5 | 28.4 | 151.0 | 0.84 |
YOLOv8n | 3.1 | 89.4 | 66.2 | 8.1 | 166.2 | 0.84 |
DBBR-YOLO (Ours) | 5.9 | 93.1 | 68.2 | 10.2 | 158.0 | 0.89 |
[1] |
张治, 邹鹏辉, 刘志锋, 等. 发射极掺杂工艺对产业化IBC太阳电池性能的影响[J]. 太阳能学报, 2022, 43(3): 158-162.
DOI |
ZHANG Z, ZOU P H, LIU Z F, et al. Influence of emitter doping process on performance of industrial IBC solar cell[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 158-162 (in Chinese).
DOI |
|
[2] |
白浩良, 王晨, 卢静, 等. 聚光光伏系统太阳能电池散热技术及发展现状[J]. 化工进展, 2023, 42(1): 159-177.
DOI |
BAI H L, WANG C, LU J, et al. Solar cell heat dissipation technology and development status of concentrating photovoltaic system[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 159-177 (in Chinese).
DOI |
|
[3] | 彭自然, 张颖清, 肖伸平. 基于YOLOv5的太阳电池表面缺陷检测[J]. 太阳能学报, 2024, 45(6): 368-375. |
PENG Z R, ZHANG Y Q, XIAO S P. Research on surface defect detection of solar cell with improved YOLOv5 algorithm[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 368-375 (in Chinese). | |
[4] | RAJPUT A S, HO J W, ZHANG Y, et al. Quantitative estimation of electrical performance parameters of individual solar cells in silicon photovoltaic modules using electroluminescence imaging[J]. Solar Energy, 2018, 173: 201-208. |
[5] | MATSUI T, TATSUMI K, KAWASHIMA T, et al. Sensitivity improvement of ultrasonic beam induced resistance change (SOBIRCH) method with ultrasound resonance inside mold resin[J]. Microelectronics Reliability, 2020, 109: 113641. |
[6] | NETZELMANN U, WALLE G, LUGIN S, et al. Induction thermography: principle, applications and first steps towards standardisation[J]. Quantitative InfraRed Thermography Journal, 2016, 13(2): 170-181. |
[7] | 杜博伦, 何赟泽, 杨瑞珍, 等. 电磁感应对硅光伏电池可视化检测技术的改性[J]. 仪器仪表学报, 2018, 39(10): 158-165. |
DU B L, HE Y Z, YANG R Z, et al. Modification of visual detection for silicon photovoltaic cells based on electromagnetic induction[J]. Chinese Journal of Scientific Instrument, 2018, 39(10): 158-165 (in Chinese). | |
[8] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[9] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2016: 779-788. |
[10] | 雷斯达, 林杰, 黄思璐, 等. 基于改进YOLOv3网络对混凝土表面裂缝目标识别研究[J]. 公路, 2024, 69(1): 270-275. |
LEI S D, LIN J, HUANG S L, et al. Research on improved YOLOv3 network for concrete surface crack detection[J]. Highway, 2024, 69(1): 270-275 (in Chinese). | |
[11] | 王坤, 冯康威. 基于改进YOLOv5的交通场景小目标检测算法[J/OL]. 北京航空航天大学学报. (2024-03-12) [2024-04-05]. https://doi.org/10.13700/j.bh.1001-5965.2024.0003. |
WANG K, FENG K W. Small target detection algorithm for traffic scene based on improved YOLOv5[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. (2024-03-12) [2024-04-05]. https://doi.org/10.13700/j.bh. 1001-5965.2024.0003 (in Chinese). | |
[12] |
李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
DOI |
LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666 (in Chinese). | |
[13] | 贾玉进, 张振程, 李浠铭, 等. 基于轻量化YOLOv5网络的输电线路绝缘子缺陷检测[J]. 电力学报, 2024, 39(1): 36-44. |
JIA J Y, ZHANG Z C, LI X M, et al. Defect detection of insulator on transmission line based on lightweight YOLOv5 network[J]. Journal of Electric Power, 2024, 39(1): 36-44 (in Chinese). | |
[14] |
PENG D X, DING W, ZHEN T. A novel low light object detection method based on the YOLOv5 fusion feature enhancement[J]. Scientific Reports, 2024, 14(1): 4486.
DOI PMID |
[15] | PENG C, LI X Y, WANG Y L. TD-YOLOA: an efficient YOLO network with attention mechanism for tire defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3529111. |
[16] |
朱强军, 胡斌, 汪慧兰, 等. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432.
DOI |
ZHU Q J, HU B, WANG H L, et al. Detection of traffic signs based on lightweight YOLOv8s[J]. Journal of Graphics, 2024, 45(3): 422-432 (in Chinese).
DOI |
|
[17] | ZHANG Y L, WU Z J, WANG X, et al. Improved YOLOv8 insulator fault detection algorithm based on BiFormer[C]// 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems. New York: IEEE Press, 2023: 962-965. |
[18] | DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10881-10890. |
[19] | WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 51094-51112. |
[20] | YANG L X, ZHANG R Y, LI L D, et al. SimAM:a simple, parameter-free attention module for convolutional neural networks[C]// The 38th International Conference on Machine Learning. New York: PMLR, 2021: 11863-11874. |
[21] | 吴磊, 储钰昆, 杨洪刚, 等. 面向铝合金焊缝DR图像缺陷的Sim-YOLOv8目标检测模型[J]. 中国激光, 2024, 51(16): 1602103.1-1602103.10. |
WU L, CHU Y K, YANG H G, et al. Sim-YOLOv8 object detection model for DR image defects in aluminum alloy welds[J]. Chinese Journal of Lasers, 2024, 51(16): 1602103.1-1602103.10 (in Chinese). | |
[22] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese). |
[1] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[2] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[3] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[4] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[5] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[6] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[7] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[8] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[9] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[10] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[11] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[12] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[13] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[14] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[15] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||