Journal of Graphics ›› 2024, Vol. 45 ›› Issue (6): 1289-1300.DOI: 10.11996/JG.j.2095-302X.2024061289
• Image Processing and Computer Vision • Previous Articles Next Articles
SONG Sicheng1,2(), CHEN Chen3, LI Chenhui1, WANG Changbo1(
)
Received:
2024-07-08
Accepted:
2024-09-06
Online:
2024-12-31
Published:
2024-12-24
Contact:
WANG Changbo
About author:
First author contact:SONG Sicheng (1997-), PhD candidate. His main research interests cover data visualization and deep learning. E-mail:scsong@stu.ecnu.edu.cn
Supported by:
CLC Number:
SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking[J]. Journal of Graphics, 2024, 45(6): 1289-1300.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024061289
Fig. 1 Challenges of multi-target tracking visualization ((a) Generalization problem of the model; (b) Missing information about target morphological changes; (c) Target segmentation under different thresholds)
Fig. 5 Visual symbols in target tracking ((a) Positioning mark; (b) Time gradient indication; (c) Micromotion enhancement; (d) Flow field visualization)
Fig. 6 Dynamic visualization of vector fields ((a) Initial noise image; (b) Optical flow visualization; (c) Visualization of all fields; (d) Visualization of key fields)
Fig. 8 Crowd tracking visualization for the shopping mall dataset ((a) Shopping mall crowd dataset; (b) Density map conversion result; (c) Crowd tracking visualization result)
Fig. 9 Visualization of CO2 emissions ((a) Visualization of CO2 changes in the Southern Hemisphere on Oct. 5, 2006; (b) Visualization of CO2 changes in the Southern Hemisphere on Oct. 25, 2006)
Fig. 11 Comparison of tracking quantification between this method and traditional methods ((a) Variance of trajectory length; (b) Trajectory length with a length threshold of 10)
Fig. 12 Comparison of tracking trajectories between this method and traditional methods ((a) Tracking results of the traditional method; (b) Tracking results of this method)
[1] | DORAISWAMY H, NATARAJAN V, NANJUNDIAH R S. An exploration framework to identify and track movement of cloud systems[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2896-2905. |
[2] | PARK Y, LEPETIT V, WOO W. Extended keyframe detection with stable tracking for multiple 3D object tracking[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(11): 1728-1735. |
[3] | VALSANGKAR A A, MONTEIRO J M, NARAYANAN V, et al. An exploratory framework for cyclone identification and tracking[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(3): 1460-1473. |
[4] | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1134-1149. |
[5] | ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: evolution of optical flow estimation with deep networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1647-1655. |
[6] | CABRAL B, LEEDOM L C. Imaging vector fields using line integral convolution[C]// The 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1993: 263-270. |
[7] |
SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.
DOI PMID |
[8] | WANG N Y, YEUNG D Y. Ensemble-based tracking: aggregating crowdsourced structured time series data[C]// The 31st International Conference on International Conference on Machine Learning. Cambridge: JMLR.Org, 2014: II-1107-II-1115. |
[9] | OESTERLING P, HEINE C, WEBER G H, et al. Computing and visualizing time-varying merge trees for high-dimensional data[M]//CARR H, GARTH C, WEINKAUF T. Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications. Cham: Springer, 2017: 87-101. |
[10] | MUTHUMANICKAM P K, VROTSOU K, NORDMAN A, et al. Identification of temporally varying areas of interest in long-duration eye-tracking data sets[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 87-97. |
[11] | RAUTENHAUS M, BÖTTINGER M, SIEMEN S, et al. Visualization in meteorology-a survey of techniques and tools for data analysis tasks[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(12): 3268-3296. |
[12] |
SBALZARINI I F, KOUMOUTSAKOS P. Feature point tracking and trajectory analysis for video imaging in cell biology[J]. Journal of Structural Biology, 2005, 151(2): 182-195.
PMID |
[13] | COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. |
[14] | WANG L, TAN T N, NING H Z, et al. Silhouette analysis-based gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1505-1518. |
[15] | CIAPARRONE G, SÁNCHEZ F L, TABIK S, et al. Deep learning in video multi-object tracking: a survey[J]. Neurocomputing, 2020, 381: 61-88. |
[16] | DANELLJAN M, HÄGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]// 2015 IEEE International Conference on Computer Vision Workshop. New York: IEEE Press, 2015: 621-629. |
[17] | BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]// 2016 IEEE International Conference on Image Processing. New York: IEEE Press, 2016: 3464-3468. |
[18] | REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2024-05-08]. https://arxiv.org/abs/1804.02767. |
[19] | LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[20] | POPPE R. Vision-based human motion analysis: an overview[J]. Computer Vision and Image Understanding, 2007, 108(1/2): 4-18. |
[21] | WANG L, HU W M, TAN T J. Recent developments in human motion analysis[J]. Pattern Recognition, 2003, 36(3): 585-601. |
[22] | ZHOU T H, BROWN M, SNAVELY N, et al. Unsupervised learning of depth and ego-motion from video[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6612-6619. |
[23] | SAQIB M, KHAN S D, SHARMA N, et al. Extracting descriptive motion information from crowd scenes[C]// 2017 International Conference on Image and Vision Computing New Zealand. New York: IEEE Press, 2017: 1-6. |
[24] |
BROX T, MALIK J. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513.
DOI PMID |
[25] | JOBARD B, RAY N, SOKOLOV D. Visualizing 2D flows with animated arrow plots[EB/OL]. [2024-05-08]. https://arxiv.org/abs/1205.5204. |
[26] |
LEFER W, JOBARD B, LEDUC C. High-quality animation of 2D steady vector fields[J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(1): 2-14.
PMID |
[27] | CHEN S, LI S H, CHEN S M, et al. R-Map: a map metaphor for visualizing information reposting process in social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 1204-1214. |
[28] | WU Y C, LIU S X, YAN K, et al. OpinionFlow: visual analysis of opinion diffusion on social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1763-1772. |
[29] | LI C H, BACIU G, WANG Y Z, et al. DDLVis: real-time visual query of spatiotemporal data distribution via density dictionary learning[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 1062-1072. |
[30] | KIM S, JEONG S, WOO I, et al. Data flow analysis and visualization for spatiotemporal statistical data without trajectory information[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(3): 1287-1300. |
[31] | LI C H, BACIU G, HAN Y. StreamMap: smooth dynamic visualization of high-density streaming points[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(3): 1381-1393. |
[32] | CHEN C, WANG C B, BAI X, et al. GenerativeMap: visualization and exploration of dynamic density maps via generative learning model[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 216-226. |
[33] | 刘灿, 赖楚凡, 蒋瑞珂, 等. 深度学习驱动的可视化[J]. 计算机辅助设计与图形学学报, 2020, 32(10): 1537-1548. |
LIU C, LAI C F, JIANG R K, et al. Visualization driven by deep learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(10): 1537-1548. (in Chinese) | |
[34] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[35] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// The 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4278-4284. |
[36] | RIBEIRO M I. Kalman and extended Kalman filters: concept, derivation and properties[EB/OL]. [2024-05-08]. https://people.duke.edu/-hpgavin/SystemID/References/Ribeiro-KalmanFilter-2004.pdf. |
[37] | LUETTEKE F, ZHANG X, FRANKE J. Implementation of the Hungarian Method for object tracking on a camera monitored transportation system[C]// ROBOTIK 2012; 7th German Conference on Robotics. New York: IEEE Press, 2012: 1-6. |
[38] | BOTEV Z, GROTOWSKI J, KROESE D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5): 2916-2957. |
[39] | PERLIN K. Improving noise[J]. ACM Transactions on Graphics (TOG), 2002, 21(3): 681-682. |
[40] | BAKER S, SCHARSTEIN D, LEWIS J, et al. A database and evaluation methodology for optical flow[J]. International Journal of Computer Vision, 2011, 92(1): 1-31. |
[41] | FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion[C]// The 13th Scandinavian Conference on Image Analysis. Cham: Springer, 2003: 363-370. |
[42] | HERSHBERGER J, SNOEYINK J. Speeding up the douglas-peucker line-simplification algorithm[EB/OL]. [2024-05-08]. https://dl.acm.org/doi/book/10.5555/902273. |
[43] |
BAO P, ZHANG L, WU X L. Canny edge detection enhancement by scale multiplication[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(9): 1485-1490.
PMID |
[44] | CHEN K, LOY C C, GONG S, et al. Feature mining for localised crowd counting[EB/OL]. [2024-05-08]. https://personal.ie.cuhk.edu.hk/-ccloy/project_feat_mine_count/index.html. |
[45] | VENKATESAN R, KOON S M, JAKUBOWSKI M H, et al. Robust image hashing[C]// 2000 International Conference on Image Processing. New York: IEEE Press, 2000: 664-666. |
[46] | VEGA F, MEDINA J, MENDOZA D, et al. A robust video identification framework using perceptual image hashing[C]// 2017 XLIII Latin American Computer Conference. New York: IEEE Press, 2017: 1-10. |
[47] | 陈辰. 基于空间特征挖掘的时空数据可视化研究[D]. 上海: 华东师范大学, 2020. |
CHEN C. Research on spatio-temporal data visualization based on spatial features mining[D]. Shanghai: East China Normal University, 2020.. (in Chinese) |
[1] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[2] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[3] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[4] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[5] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[6] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[7] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[8] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[9] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[10] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[11] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[12] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[13] | ZHU Guanghui, MIAO Jun, HU Hongli, SHEN Ji, DU Ronghua. 3D piece-wise planar reconstruction from a single indoor image based on self-augmented -attention mechanism [J]. Journal of Graphics, 2024, 45(3): 464-471. |
[14] | WANG Zhiru, CHANG Yuan, LU Peng, PAN Chengwei. A review on neural radiance fields acceleration [J]. Journal of Graphics, 2024, 45(1): 1-13. |
[15] | WANG Xinyu, LIU Hui, ZHU Jicheng, SHENG Yurui, ZHANG Caiming. Deep multimodal medical image fusion network based on high-low frequency feature decomposition [J]. Journal of Graphics, 2024, 45(1): 65-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||