Journal of Graphics ›› 2024, Vol. 45 ›› Issue (6): 1256-1265.DOI: 10.11996/JG.j.2095-302X.2024061256
• Special Topic on “Large Models and Graphics Technology and Applications” • Previous Articles Next Articles
LIU Canfeng1(), SUN Hao1, DONG Hui1,2(
)
Received:
2024-07-30
Accepted:
2024-09-23
Online:
2024-12-31
Published:
2024-12-24
Contact:
DONG Hui
About author:
First author contact:LIU Canfeng (1999-), master student. His main research interests cover deep learning and time series predict. E-mail:220227106@fzu.edu.cn
Supported by:
CLC Number:
LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network[J]. Journal of Graphics, 2024, 45(6): 1256-1265.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024061256
Fig. 6 Experimental data prediction results ((a) NAAT prediction curves for positive data with different cycles, bar graphs indicate endpoint values; (b) NAAT prediction curves for negative data with different cycles; (c) Amplification rates and slopes of adjacent points of prediction curves)
Model | KAN | Decoder | Encoder | Attention | Curve | Rmse | Endpoint error | R-squared | Params | Train time/s | Volatility |
---|---|---|---|---|---|---|---|---|---|---|---|
Model1 | × | × | √ | × | ![]() | 93.94 | 104.11 | -29.02 | 5.92×106 | 8.25 | 5.76 |
Model2 | √ | × | × | × | ![]() | 71.52 | 78.06 | -16.4 | 2.04×106 | 6.75 | 0.10 |
Model3 | × | × | √ | √ | ![]() | 19.76 | 21.70 | -0.33 | 1.30×107 | 22.53 | 10.32 |
Transf-ormer | × | √ | √ | √ | ![]() | 5.89 | 2.19 | 0.88 | 2.30×107 | 47.45 | 6.24 |
Ours | √ | × | √ | √ | ![]() | 2.28 | 1.87 | 0.98 | 1.15×107 | 21.82 | 1.65 |
Table 1 Ablation experiment results
Model | KAN | Decoder | Encoder | Attention | Curve | Rmse | Endpoint error | R-squared | Params | Train time/s | Volatility |
---|---|---|---|---|---|---|---|---|---|---|---|
Model1 | × | × | √ | × | ![]() | 93.94 | 104.11 | -29.02 | 5.92×106 | 8.25 | 5.76 |
Model2 | √ | × | × | × | ![]() | 71.52 | 78.06 | -16.4 | 2.04×106 | 6.75 | 0.10 |
Model3 | × | × | √ | √ | ![]() | 19.76 | 21.70 | -0.33 | 1.30×107 | 22.53 | 10.32 |
Transf-ormer | × | √ | √ | √ | ![]() | 5.89 | 2.19 | 0.88 | 2.30×107 | 47.45 | 6.24 |
Ours | √ | × | √ | √ | ![]() | 2.28 | 1.87 | 0.98 | 1.15×107 | 21.82 | 1.65 |
Model | Nhead | Enc.-layer | Window | Dmodel | Grid_size | Activation | Curve | Rmse | Endpoint error | R-squared |
---|---|---|---|---|---|---|---|---|---|---|
Model1 | 4 | 2 | 8 | 700 | 5 | Silu | ![]() | 7.05 | 2.39 | 0.83 |
Model2 | 1 | 2 | 8 | 700 | 5 | Silu | ![]() | 5.97 | 4.47 | 0.88 |
Model3 | 2 | 1 | 8 | 700 | 5 | Silu | ![]() | 15.35 | 17.53 | 0.20 |
Model4 | 2 | 3 | 8 | 700 | 5 | Silu | ![]() | 5.65 | 0.18 | 0.89 |
Model5 | 2 | 2 | 6 | 700 | 5 | Silu | ![]() | 10.74 | 4.76 | 0.61 |
Model6 | 2 | 2 | 10 | 700 | 5 | Silu | ![]() | 10.20 | 11.54 | 0.65 |
Model7 | 2 | 2 | 8 | 650 | 5 | Silu | ![]() | 18.05 | 20.61 | -0.11 |
Model8 | 2 | 2 | 8 | 750 | 5 | Silu | ![]() | 14.95 | 17.08 | 0.24 |
Model9 | 2 | 2 | 8 | 700 | 3 | Silu | ![]() | 37.22 | 41.69 | -3.71 |
Model10 | 2 | 2 | 8 | 700 | 7 | Silu | ![]() | 7.94 | 8.45 | 0.78 |
Model11 | 2 | 2 | 8 | 700 | 5 | Relu | ![]() | 6.94 | 6.76 | 0.84 |
Model12 | 2 | 2 | 8 | 700 | 5 | Sig-moid | ![]() | 9.41 | 9.76 | 0.70 |
Ours | 2 | 2 | 8 | 700 | 5 | Silu | ![]() | 2.28 | 1.87 | 0.98 |
Table 2 Model performance and hyperparameter configuration
Model | Nhead | Enc.-layer | Window | Dmodel | Grid_size | Activation | Curve | Rmse | Endpoint error | R-squared |
---|---|---|---|---|---|---|---|---|---|---|
Model1 | 4 | 2 | 8 | 700 | 5 | Silu | ![]() | 7.05 | 2.39 | 0.83 |
Model2 | 1 | 2 | 8 | 700 | 5 | Silu | ![]() | 5.97 | 4.47 | 0.88 |
Model3 | 2 | 1 | 8 | 700 | 5 | Silu | ![]() | 15.35 | 17.53 | 0.20 |
Model4 | 2 | 3 | 8 | 700 | 5 | Silu | ![]() | 5.65 | 0.18 | 0.89 |
Model5 | 2 | 2 | 6 | 700 | 5 | Silu | ![]() | 10.74 | 4.76 | 0.61 |
Model6 | 2 | 2 | 10 | 700 | 5 | Silu | ![]() | 10.20 | 11.54 | 0.65 |
Model7 | 2 | 2 | 8 | 650 | 5 | Silu | ![]() | 18.05 | 20.61 | -0.11 |
Model8 | 2 | 2 | 8 | 750 | 5 | Silu | ![]() | 14.95 | 17.08 | 0.24 |
Model9 | 2 | 2 | 8 | 700 | 3 | Silu | ![]() | 37.22 | 41.69 | -3.71 |
Model10 | 2 | 2 | 8 | 700 | 7 | Silu | ![]() | 7.94 | 8.45 | 0.78 |
Model11 | 2 | 2 | 8 | 700 | 5 | Relu | ![]() | 6.94 | 6.76 | 0.84 |
Model12 | 2 | 2 | 8 | 700 | 5 | Sig-moid | ![]() | 9.41 | 9.76 | 0.70 |
Ours | 2 | 2 | 8 | 700 | 5 | Silu | ![]() | 2.28 | 1.87 | 0.98 |
Fig. 7 Experimental results of different algorithms, bar graphs represent absolute errors for each cycle ((a) CNN series; (b) RNN series; (c) Bidirectional RNN series; (d) Transformer and TS.-KAN)
[1] | YANG X, QI X J, ZHOU X B. Deep learning technologies for time series anomaly detection in healthcare: a review[J]. IEEE Access, 2023, 11: 117788-117799. |
[2] | MORID M A, SHENG O R L, DUNBAR J. Time series prediction using deep learning methods in healthcare[J]. ACM Transactions on Management Information Systems, 2023, 14(1): 2. |
[3] | KODE H, ELLEITHY K, ALMAZAYDEH L. Epileptic seizure detection in EEG signals using machine learning and deep learning techniques[J]. IEEE Access, 2024, 12: 80657-80668. |
[4] | XIE F, YUAN H, NING Y L, et al. Deep learning for temporal data representation in electronic health records: a systematic review of challenges and methodologies[J]. Journal of Biomedical Informatics, 2022, 126: 103980. |
[5] | THUWAJIT P, RANGPONG P, SAWANGJAI P, et al. EEGWaveNet: multiscale CNN-based spatiotemporal feature extraction for EEG seizure detection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5547-5557. |
[6] |
TANG Y X, WU Q Y, MAO H F, et al. Epileptic seizure detection based on path signature and Bi-LSTM network with attention mechanism[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 304-313.
DOI PMID |
[7] | LU W J, LI J Z, WANG J Y, et al. A CNN-BiLSTM-AM method for stock price prediction[J]. Neural Computing and Applications, 2021, 33(10): 4741-4753. |
[8] | RAFI S H, NAHID-AL-MASOOD, DEEBA S R, et al. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448. |
[9] | JIA C Y, TIAN Y K, SHI Y H, et al. State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer[J]. Energy, 2023, 285: 129401. |
[10] |
王玉萍, 曾毅, 李胜辉, 等. 一种基于Transformer的三维人体姿态估计方法[J]. 图学学报, 2023, 44(1): 139-145.
DOI |
WANG Y P, ZENG Y, LI S H, et al. A Transformer-based 3D human pose estimation method[J]. Journal of Graphics, 2023, 44(1): 139-145. (in Chinese) | |
[11] | KIM J, KANG H, KANG P. Time-series anomaly detection with stacked Transformer representations and 1D convolutional network[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105964. |
[12] | LI C, ZHANG Z Z, ZHANG X D, et al. EEG-based emotion recognition via transformer neural architecture search[J]. IEEE Transactions on Industrial Informatics, 2023, 19(4): 6016-6025. |
[13] | JIANG Y R, MALLIARAS P, CHEN B, et al. Real-time forecasting of exercise-induced fatigue from wearable sensors[J]. Computers in Biology and Medicine, 2022, 148: 105905. |
[14] | LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks[EB/OL]. [2024-09-21]. https://arxiv.org/abs/2404.19756.pdf. |
[15] | KANG T J, LU J M, YU T, et al. Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example[J]. Biosensors and Bioelectronics, 2022, 206: 114109. |
[16] | QIAN J J, ZHANG Q M, LU M. Integration of on-chip lysis and paper-based sensor for rapid detection of viral and exosomal RNAs[J]. Biosensors and Bioelectronics, 2023, 226: 115114. |
[17] | SUN H, JIANG Q H, HUANG Y, et al. Integrated smart analytics of nucleic acid amplification tests via paper microfluidics and deep learning in cloud computing[J]. Biomedical Signal Processing and Control, 2023, 83: 104721. |
[18] | SUN H, XIE W T, HUANG Y, et al. Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests[J]. Talanta, 2023, 258: 124470. |
[19] | WANG C J, CHEN Y Y, ZHANG S Q, et al. Stock market index prediction using deep Transformer model[J]. Expert Systems with Applications, 2022, 208: 118128. |
[20] |
罗智徽, 胡海涛, 马潇峰, 等. 基于同质中间模态的跨模态行人再识别方法[J]. 图学学报, 2024, 45(4): 670-682.
DOI |
LUO Z H, HU H T, MA X F, et al. A network based on the homogeneous middle modality for cross-modality person re-identification[J]. Journal of Graphics, 2024, 45(4): 670-682. (in Chinese)
DOI |
|
[21] | SHAO L, FAN Z Q, LI J, et al. Research on road vehicle detection based on improved Yolov5s[C]// 2022 IEEE International Conference on Mechatronics and Automation. New York: IEEE Press, 2022: 428-433. |
[22] | SHAIN E B, CLEMENS J M. A new method for robust quantitative and qualitative analysis of real-time PCR[J]. Nucleic Acids Research, 2008, 36(14): e91. |
[23] | CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. Peer J Computer Science, 2021, 7: e623. |
[24] | PYO J C, PACHEPSKY Y, KIM S, et al. Long short-term memory models of water quality in inland water environments[J]. Water Research X, 2023, 21: 100207. |
[25] | ROSTAMIAN A, O’HARA J G. Event prediction within directional change framework using a CNN-LSTM model[J]. Neural Computing and Applications, 2022, 34(20): 17193-17205. |
[26] | LI X, MA Z Q, YUAN Z H, et al. A review on convolutional neural network in rolling bearing fault diagnosis[J]. Measurement Science and Technology, 2024, 35(7): 072002. |
[27] | RUIZ-VILLALBA A, RUIJTER J M, VAN DEN HOFF M J B. Use and misuse of Cq in qPCR data analysis and reporting[J]. Life, 2021, 11(6): 496. |
[1] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[2] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[3] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[4] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[5] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[6] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[7] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[8] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[9] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[10] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[11] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[12] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[13] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. |
[14] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[15] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||