欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (4): 747-754.DOI: 10.11996/JG.j.2095-302X.2023040747

• 图像处理与计算机视觉 • 上一篇    下一篇

面向开放道路场景的实时稠密建图研究

李新利(), 毛昊, 王武, 杨国田   

  1. 华北电力大学控制与计算机工程学院,北京 102206
  • 收稿日期:2023-02-03 接受日期:2023-03-24 出版日期:2023-08-31 发布日期:2023-08-16
  • 作者简介:第一联系人:

    李新利(1973-),女,副教授,博士。主要研究方向为模式识别、智能系统与图像处理。E-mail:lixinli@ncepu.edu.cn

Research on real-time dense reconstruction for open road scene

LI Xin-li(), MAO Hao, WANG Wu, YANG Guo-tian   

  1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2023-02-03 Accepted:2023-03-24 Online:2023-08-31 Published:2023-08-16
  • About author:First author contact:

    LI Xin-li (1973-), associate professor, Ph.D. Her main research interests cover pattern recognition, intelligent system and digital image processing. E-mail:lixinli@ncepu.edu.cn

摘要:

针对智能驾驶领域建图效率低、建图精度差的问题,提出一种基于多传感器融合且用于室外开放道路场景的两阶段稠密建图算法。算法由外参实时标定模块和建图模块组成,外参实时标定模块基于道路场景中典型语义和几何特征构建约束并进行优化,实现对传感器间外参的实时在线标定;建图模块的核心在于一种两阶段增量式建图算法,根据智能驾驶中对不同区域的建图精度要求,先后分别对整个场景以及路面区域进行逐帧增量式粗糙建图和抽帧精细建图,粗糙建图保证了算法的实时性,精细建图实现了对交通标志等路面表面纹理的精确还原。在室外开放道路场景下进行实验,实验结果表明,该算法能在室外大尺度场景下进行实时稠密建图,且建图精度和效率较高。

关键词: 开放道路场景, 实时稠密建图, 多传感器融合, 外参标定, 增量式建图

Abstract:

In order to tackle the problems of inefficiency and inaccurate mapping prevalent in the field of intelligent driving, a two-stage dense mapping algorithm for outdoor open road scenes based on multi-sensor fusion was proposed. The proposed algorithm comprised an extrinsic parameter real-time calibration module and a mapping module. The former constructed constraints and optimized them based on typical semantic and geometric features in road scenes, achieving real-time online calibration of extrinsic parameters between sensors. The latter’s core was a two-stage incremental mapping algorithm that performed incremental coarse mapping and fine mapping for the entire scene and road face area, respectively. The rough mapping could guarantee the real-time performance of the algorithm, and fine mapping could achieve accurate restoration of road surface textures such as traffic signs. Experimental results in an outdoor open road scene demonstrated that the proposed algorithm could perform real-time dense mapping in outdoor large-scale scenes, with high accuracy and efficiency.

Key words: open road scene, real-time dense reconstruction, multi-sensor fusion, extrinsic calibration, incremental mapping

中图分类号: