图学学报 ›› 2024, Vol. 45 ›› Issue (3): 575-584.DOI: 10.11996/JG.j.2095-302X.2024030575
薛雨彤1,2(), 王爱增1,2(
), 岳怡珂1,2, 何川1,2, 赵罡1,2
收稿日期:
2023-11-22
接受日期:
2024-02-29
出版日期:
2024-06-30
发布日期:
2024-06-12
通讯作者:
王爱增(1982-),男,副教授,博士。主要研究方向为几何造型、CAE等。E-mail:azwang@buaa.edu.cn第一作者:
薛雨彤(1999-),女,硕士研究生。主要研究方向为等几何分析。E-mail:xyt18811733395@163.com
基金资助:
XUE Yutong1,2(), WANG Aizeng1,2(
), YUE Yike1,2, HE Chuan1,2, ZHAO Gang1,2
Received:
2023-11-22
Accepted:
2024-02-29
Published:
2024-06-30
Online:
2024-06-12
First author:
XUE Yutong (1999-), master student. Her main research interest covers isogeometric analysis. E-mail:xyt18811733395@163.com
Supported by:
摘要:
本文提出了一种基于等几何法和模拟退火的壳结构分析及优化算法,旨在提高复杂壳结构的CAD与CAE一体化设计效率。首先基于NURBS技术对薄壳结构进行适分析参数化建模,然后基于Kirchhoff-Love壳理论实现等几何分析。接着,基于模拟退火算法以壳体的几何参数为设计变量,以多项力学性能为目标函数进行优化,实现了等几何分析与智能优化算法相结合的壳结构分析与优化。最后,通过2个算例验证了该算法的有效性。相对于传统有限元方法,该算法具有高精度、高效率的优势。
中图分类号:
薛雨彤, 王爱增, 岳怡珂, 何川, 赵罡. 基于等几何法和模拟退火的复杂壳结构分析及优化[J]. 图学学报, 2024, 45(3): 575-584.
XUE Yutong, WANG Aizeng, YUE Yike, HE Chuan, ZHAO Gang. Complex shell structure analysis and optimization based on isogeometric analysis and simulated annealing algorithm[J]. Journal of Graphics, 2024, 45(3): 575-584.
图4 锥柱壳等几何分析结果图((a)等几何分析应力云图;(b)等几何分析位移云图)
Fig. 4 Isogeometric analysis results of conical-cylindrical shell ((a) Stress contour plot of isogeometric analysis; (b) Displacement contour plot of isogeometric analysis)
图5 锥柱壳有限元分析结果图((a)有限元分析应力云图;(b)有限元分析位移云图)
Fig. 5 Finite element analysis results of conical-cylindrical shell ((a) Stress contour plot from finite element analysis; (b) Displacement contour plot from finite element analysis)
实验名称 | 最大应力/ MPa | 最大位移/ mm | 总时长/ s |
---|---|---|---|
一次有限元分析 (单元数:13 320) | 813.24 | 1.143 4 | 18.23 |
二次有限元分析 (单元数:23 664) | 810.67 | 1.149 5 | 44.95 |
三次有限元分析 (单元数:96 731) | 804.30 | 1.153 3 | 268.18 |
四次有限元分析 (单元数:153 655) | 802.68 | 1.153 7 | 508.69 |
等几何分析 | 801.11 | 1.155 5 | 44.16 |
表1 锥柱壳有限元分析与等几何分析结果对比
Table 1 Comparison of finite element analysis and isogeometric analysis results for conical-cylindrical shell
实验名称 | 最大应力/ MPa | 最大位移/ mm | 总时长/ s |
---|---|---|---|
一次有限元分析 (单元数:13 320) | 813.24 | 1.143 4 | 18.23 |
二次有限元分析 (单元数:23 664) | 810.67 | 1.149 5 | 44.95 |
三次有限元分析 (单元数:96 731) | 804.30 | 1.153 3 | 268.18 |
四次有限元分析 (单元数:153 655) | 802.68 | 1.153 7 | 508.69 |
等几何分析 | 801.11 | 1.155 5 | 44.16 |
参数 | 最大位移/mm | 应力方差×10−4 | 质量/g |
---|---|---|---|
初始值 | 1.73 | 2.54 | 441.02 |
优化值 | 0.76 | 0.17 | 432.41 |
变化量 | −56.07% | −93.31% | −1.95% |
表2 锥柱壳优化结果
Table 2 The optimized results of the conical-cylindrical shell
参数 | 最大位移/mm | 应力方差×10−4 | 质量/g |
---|---|---|---|
初始值 | 1.73 | 2.54 | 441.02 |
优化值 | 0.76 | 0.17 | 432.41 |
变化量 | −56.07% | −93.31% | −1.95% |
图9 带孔柱壳等几何分析结果图((a)等几何分析应力云图;(b)等几何分析位移云图)
Fig. 9 Isogeometric analysis results of a shell with a hole ((a) Stress contour plot of isogeometric analysis; (b) Displacement contour plot of isogeometric analysis)
图10 带孔柱壳有限元分析结果图((a)有限元分析应力云图;(b)有限元分析位移云图)
Fig. 10 Finite element analysis results of a shell with a hole ((a) Stress contour plot from finite element analysis; (b) Displacement contour plot from finite element analysis)
实验名称 | 最大应力/ MPa | 最大位移/ mm | 总时长/ s |
---|---|---|---|
一次有限元分析 (单元数:3 884) | 432.80 | 0.620 0 | 10.97 |
二次有限元分析 (单元数:15 511) | 441.13 | 0.626 0 | 31.46 |
三次有限元分析 (单元数:63 316) | 445.42 | 0.626 4 | 161.64 |
四次有限元分析 (单元数:98 998) | 446.59 | 0.629 8 | 282.10 |
等几何分析 | 452.47 | 0.631 1 | 49.67 |
表3 带孔柱壳有限元分析与等几何分析结果对比
Table 3 Comparison between finite element analysis and isogeometric analysis results for a shell with a hole
实验名称 | 最大应力/ MPa | 最大位移/ mm | 总时长/ s |
---|---|---|---|
一次有限元分析 (单元数:3 884) | 432.80 | 0.620 0 | 10.97 |
二次有限元分析 (单元数:15 511) | 441.13 | 0.626 0 | 31.46 |
三次有限元分析 (单元数:63 316) | 445.42 | 0.626 4 | 161.64 |
四次有限元分析 (单元数:98 998) | 446.59 | 0.629 8 | 282.10 |
等几何分析 | 452.47 | 0.631 1 | 49.67 |
[1] | HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis: cad, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4135-4195. |
[2] | 徐岗, 李新, 黄章进, 等. 面向等几何分析的几何计算[J]. 计算机辅助设计与图形学学报, 2015, 27(4): 570-581. |
XU G, LI X, HUANG Z J, et al. Geometric computing for isogeometric analysis[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(4): 570-581 (in Chinese). | |
[3] |
马佳玲, 徐岗, 许金兰, 等. 计算域与物理场样条空间相异的广义等几何配点法[J]. 系统科学与数学, 2018, 38(12): 1393-1406.
DOI |
MA J L, XU G, XU J L, et al. Generalized isogeometric collocation method with different spline space for computational domain and physical field[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(12): 1393-1406 (in Chinese). | |
[4] | WALL W A, FRENZEL M A, CYRON C. Isogeometric structural shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40): 2976-2988. |
[5] | KIENDL J, SCHMIDT R, WÜCHNER R, et al. Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 274: 148-167. |
[6] | NAGY A P, IJSSELMUIDEN S T, ABDALLA M M. Isogeometric design of anisotropic shells: optimal form and material distribution[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 264: 145-162. |
[7] | CAI S Y, ZHANG H L, ZHANG W H. An integrated design approach for simultaneous shape and topology optimization of shell structures[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 415: 116218. |
[8] | HERATH M T, NATARAJAN S, PRUSTY B G, et al. Isogeometric analysis and genetic algorithm for shape-adaptive composite marine propellers[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 835-860. |
[9] | SUN S H, YU T T, NGUYEN T T, et al. Structural shape optimization by IGABEM and particle swarm optimization algorithm[J]. Engineering Analysis with Boundary Elements, 2018, 88: 26-40. |
[10] | YANG F F, YU T T, BUI T Q. Morphogenesis of free-form surfaces by an effective approach based on isogeometric analysis and particle swarm optimization[J]. Structures, 2023, 47: 2347-2353. |
[11] | YANG F F, YU T T, LIU Z W, et al. Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff-Love shell theory[J]. Finite Elements in Analysis and Design, 2023, 223: 103989. |
[12] | 廖中源. 基于等几何分析的高效结构优化方法研究[D]. 广州: 华南理工大学, 2021. |
LIAO Z Y. Research on isogeometric-analysis-based efficient structural optimization method[D]. Guangzhou: South China University of Technology, 2021 (in Chinese). | |
[13] | KIENDL J, BLETZINGER K U, LINHARD J, et al. Isogeometric shell analysis with Kirchhoff-Love elements[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49-52): 3902-3914. |
[14] | KIENDL J, BAZILEVS Y, HSU M C, et al. The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 2403-2416. |
[15] | HERREMA A J, JOHNSON E L, PROSERPIO D, et al. Penalty coupling of non-matching isogeometric Kirchhoff- Love shell patches with application to composite wind turbine blades[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 810-840. |
[16] | URICK B, MARUSSIG B, COHEN E, et al. Watertight Boolean operations: a framework for creating CAD-compatible gap-free editable solid models[J]. Computer-Aided Design, 2019, 115(C): 147-160. |
[17] | BREITENBERGER M, APOSTOLATOS A, PHILIPP B, et al. Analysis in computer aided design: nonlinear isogeometric B-Rep analysis of shell structures[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 401-457. |
[18] | SCHMIDT R, WÜCHNER R, BLETZINGER K U. Isogeometric analysis of trimmed NURBS geometries[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 241-244: 93-111. |
[19] | 刘宏亮, 祝雪峰, 杨迪雄. 基于等几何分析的结构优化设计研究进展[J]. 固体力学学报, 2018, 39(3): 248-267. |
LIU H L, ZHU X F, YANG D X. Research advances in isogeometric analysis-based optimum design of structure[J]. Chinese Journal of Solid Mechanics, 2018, 39(3): 248-267 (in Chinese). | |
[20] | 蔡新, 李洪煊, 武颖利, 等. 工程结构优化设计研究进展[J]. 河海大学学报: 自然科学版, 2011, 39(3): 269-276. |
CAI X, LI H X, WU Y L, et al. Research progress of optimal design for engineering structures[J]. Journal of Hohai University: Natural Sciences, 2011, 39(3): 269-276 (in Chinese). | |
[21] | 曹银行, 柳贡民, 胡志. 锥-柱组合壳结构固有特性计算和优化设计[J]. 哈尔滨工程大学学报, 2023, 44(3): 395-401. |
CAO Y H, LIU G M, HU Z. Calculation of the inherent characteristics and optimal design of the cone-column composite shell structure[J]. Journal of Harbin Engineering University, 2023, 44(3): 395-401 (in Chinese). | |
[22] | 王丹, 张卫红. 带孔薄壁曲面结构的孔洞形状优化设计[C]// 中国计算力学大会’2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集. 北京: 中国力学学会, 2010: 632-638. |
WANG D, ZHANG W H. Shape optimization of holes on thin-walled curved surfaces[C]// Chinese Conference on Computational Mechanics 2010 (CCCM2010) and the 8th Southern Conference on Computational Mechanics (SCCM8). Beijing: CSTAM, 2010: 632-638. |
[1] | 阎光伟, 刘润泽, 焦润海, 何慧. 基于改进Cascade RCNN的输电线路防振锤脱落检测方法[J]. 图学学报, 2023, 44(5): 849-860. |
[2] | 邹强. 浅谈实体建模:历史、现状与未来[J]. 图学学报, 2022, 43(6): 987-1001. |
[3] | 薛雨彤, 赵罡, 王爱增, 何川. 直齿圆柱齿轮弯曲强度等几何分析[J]. 图学学报, 2022, 43(1): 79-84. |
[4] | 贾悦, ANITESCU Cosmin, 李春 . 基于改进的 PHT-样条自适应等几何配点法[J]. 图学学报, 2022, 43(1): 110-117. |
[5] | 冷珏琳, 张 哲, 刘田田, 郑 澎. 基于几何矩的 CAD 模型形状匹配算法及应用[J]. 图学学报, 2021, 42(4): 608-614. |
[6] | 杨佳明 , 赵 罡 , 王 伟 , 郭马一 , 杜孝孝 . 混合 B 样条实体模型的等几何拓扑优化 [J]. 图学学报, 2021, 42(3): 501-510. |
[7] | 张维锦, 陈五琴 . 基于 Revit 的桩基承台自动设计算法[J]. 图学学报, 2019, 40(4): 771-777. |
[8] | 张 超 . 基于 4D-BIM 的曲港高速公路质量与安全研究[J]. 图学学报, 2019, 40(4): 778-782. |
[9] | 叶 颖, 张 琪, 苏智勇 . 基于哈希的二维工程 CAD 图纸检索技术[J]. 图学学报, 2018, 39(5): 963-969. |
[10] | 王业明 . “作业驱动”下 CAD 融入土木工程制图教学的 研究与实践[J]. 图学学报, 2018, 39(5): 1009-1013. |
[11] | 周家智, 尹 令, 张素敏. 基于遗传模拟退火算法的布局优化研究[J]. 图学学报, 2018, 39(3): 567-572. |
[12] | 王 珉, 张宗波, 牛文杰, 曹清园. 融合云课堂的“机械CAD 基础”课程教学改革研究[J]. 图学学报, 2018, 39(2): 367-372. |
[13] | 赵 燕. 将3D 打印技术融入工程图学课程的教改实践[J]. 图学学报, 2017, 38(增刊): 52-55. |
[14] | 杜 颖, 张宇佳, 张延华, 孙亚明. AutoCAD 工程图册设计流程化管理和标准化模板应用的研究[J]. 图学学报, 2017, 38(增刊): 65-71. |
[15] | 穆浩志1,王晓菲 1,蔡 兵 2,牛兴华 1. 基于“互联网+”的《工程制图》课程 CAD 上机实验教学研究与实践[J]. 图学学报, 2017, 38(5): 772-778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||