图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1132-1144.DOI: 10.11996/JG.j.2095-302X.2024061132
刘冀辰1,2(), 李金星3, 吴佳4, 张威1,2, 齐宇诺4, 周国亮1,2(
)
收稿日期:
2024-07-31
接受日期:
2024-10-21
出版日期:
2024-12-31
发布日期:
2024-12-24
通讯作者:
周国亮(1978-),男,教授,博士。主要研究方向为无人机智能巡检、图像检测与识别技术等。E-mail:25377468@qq.com第一作者:
刘冀辰(1988-),男,讲师,硕士。主要研究方向为计算机视觉、人工智能大模型技术等。E-mail:moxinxue126@126.com
基金资助:
LIU Jichen1,2(), LI Jinxing3, WU Jia4, ZHANG Wei1,2, QI Yunuo4, ZHOU Guoliang1,2(
)
Received:
2024-07-31
Accepted:
2024-10-21
Published:
2024-12-31
Online:
2024-12-24
Contact:
ZHOU Guoliang (1978-), professor, Ph.D. His main research interests cover drone intelligent inspection, image detection and recognition technology, etc. E-mail:25377468@qq.comFirst author:
LIU Jichen (1988-), lecturer, master. His main research interests cover computer vision, artificial intelligence large model technology, etc. E-mail:moxinxue126@126.com
Supported by:
摘要:
人工智能(AI)技术已广泛应用于电力行业多个专业领域,正在推动电力行业向智能化、自动化的方向发展。特别是在图学领域,AI大模型的应用已经成为研究热点,其在图像识别、模式识别以及图数据分析等方面展现出巨大潜力。应用大模型解决电力行业的图像识别、自然语言处理、业务内容分析等专业问题,可大幅提升电力行业各业务领域的效率和准确性。以大模型在电力调度、输电、营销等场景的应用展望为主线,首先介绍了人工智能大模型技术的研究背景、发展历程以及技术特征。其次,综述了AI技术在电力调度故障处置、输电无人机巡检、电力营销客户服务等专业的应用现状,分析了目前电力行业研究应用大模型存在的问题与挑战。最后,梳理了大模型技术在电力行业的发展趋势和技术应用分析,并对应用场景进行了展望。
中图分类号:
刘冀辰, 李金星, 吴佳, 张威, 齐宇诺, 周国亮. 大模型技术在电力行业的应用展望[J]. 图学学报, 2024, 45(6): 1132-1144.
LIU Jichen, LI Jinxing, WU Jia, ZHANG Wei, QI Yunuo, ZHOU Guoliang. Prospects for the application of large models technology in the power industry[J]. Journal of Graphics, 2024, 45(6): 1132-1144.
[1] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[2] | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07) [2024-05-31]. https://arxiv.org/abs/1301.3781. |
[3] | HUANG P S, HE X D, GAO J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]// The 22nd ACM International Conference on Information & Knowledge Management. New York: ACM, 2013: 2333-2338. |
[4] | KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[EB/OL]. [2024-05-31]. https://aclanthology.org/P14-1062/. |
[5] | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// The 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3104-3112. |
[6] | SOCHER R, PERELYGIN A, WU J, et al. Recursive deep models for semantic compositionality over a sentiment treebank[EB/OL]. [2024-05-31]. https://aclanthology.org/D13-1170/. |
[7] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[8] | YANG J F, JIN H Y, TANG R X, et al. Harnessing the power of LLMs in practice: a survey on ChatGPT and beyond[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(6): 160. |
[9] | 罗锦钊, 孙玉龙, 钱增志, 等. 人工智能大模型综述及展望[J]. 无线电工程, 2023, 53(11): 2461-2472. |
LUO J Z, SUN Y L, QIAN Z Z, et al. Overview and prospect of artificial intelligence large models[J]. Radio Engineering, 2023, 53(11): 2461-2472. (in Chinese) | |
[10] | SONG M Y, WANG J R, YU, Z H, et al. PneumoLLM: harnessing the power of large language model for pneumoconiosis diagnosis[EB/OL]. (2024-06-29) [2024-07-02]. https://arxiv.org/abs/2312.03490. |
[11] | LEE S, KIM W J, CHANG J, et al. LLM-CXR: instruction-finetuned LLM for CXR image understanding and generation[EB/OL]. (2024-03-18) [2024-07-02]. https://arxiv.org/abs/2305.11490. |
[12] | ZHANG S Y, FU D C, LIANG W Z, et al. TrafficGPT: viewing, processing and interacting with traffic foundation models[J]. Transport Policy, 2024, 150: 95-105. |
[13] | DING X, HAN J, XU H, et al. Holistic autonomous driving understanding by Bird’s-eye view injected multi-modal large models[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 13668-13677. |
[14] | WU S J, IRSOY O, LU S, et al. BloombergGPT: a large language model for finance[EB/OL]. (2023-12-21) [2024-07-02]. https://arxiv.org/abs/2303.17564. |
[15] | LIANG Y W, HE J F, LI G, et al. Rich human feedback for text-to-image generation[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 19401-19411. |
[16] | CUI J X, NING M N, LI Z J, et al. Chatlaw: a multi-agent collaborative legal assistant with knowledge graph enhanced mixture-of-experts large language model[EB/OL]. (2024-05-30) [2024-07-02]. https://arxiv.org/abs/2306.16092. |
[17] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2019-05-24) [2024-07-02]. https://arxiv.org/abs/1810.04805. |
[18] | DING M, ZHOU C, YANG H X, et al. CogLTX: applying BERT to long texts[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 12792-12804. |
[19] | BAO H B, DONG L, PIAO S H, et al. BEiT: BERT pre-training of image transformers[EB/OL]. (2022-09-03) [2024-07-02]. http://arxiv.org/abs/2106.08254. |
[20] | NGUYEN X B, DUONG C N, LI X, et al. Micron-BERT: BERT-based facial micro-expression recognition[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 1482-1492. |
[21] | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[EB/OL]. (2020-07-22) [2024-07-02]. https://arxiv.org/pdf/2005.14165. |
[22] | LIN K, WANG L J, LIU Z C. End-to-end human pose and mesh reconstruction with transformers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 1954-1963. |
[23] | PERRETT T, MASULLO A, BURFHARDT T, et al. Temporal-relational CrossTransformers for few-shot action recognition[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 475-484. |
[24] | HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[EB/OL]. (2019-06-13) [2024-07-03]. https://arxiv.org/abs/1902.00751. |
[25] | LI X L, LIANG P. Prefix-tuning: optimizing continuous prompts for generation[EB/OL]. (2021-01-01) [2024-07-03]. https://arxiv.org/abs/2101.00190. |
[26] | HU E J, SHEN Y L, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. (2021-10-16) [2024-07-03]. https://arxiv.org/abs/2106.09685. |
[27] | ZHAO P H, ZHANG H L, YU Q H, et al. Retrieval-augmented generation for AI-generated content: a survey[EB/OL]. (2024-06-21) [2024-07-03]. https://arxiv.org/abs/2402.19473. |
[28] | LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 9459-9474. |
[29] | EDGE D, TRINH H, CHENG N, et al. From local to global: a graph RAG approach to query-focused summarization[EB/OL]. (2024-04-24) [2024-07-03]. https://arxiv.org/abs/2404.16130. |
[30] | LIU P F, YUAN W Z, FU J L. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 195. |
[31] | 闪鑫, 戴则梅, 张哲, 等. 智能电网调度控制系统综合智能告警研究及应用[J]. 电力系统自动化, 2015, 39(1): 65-72. |
SHAN X, DAI Z M, ZHANG Z, et al. Research on and application of integrated smart alarm based on smart grid dispatching and control systems[J]. Automation of Electric Power Systems, 2015, 39(1): 65-72. (in Chinese) | |
[32] | 阎博, 张昊, 郭子明, 等. 基于多源数据融合的电网故障综合分析与智能告警技术研究与应用[J]. 中国电力, 2018, 51(2): 39-46. |
YAN B, ZHANG H, GUO Z M, et al. Research and application of power grid fault integrated analysis and smart alarm based on multi-data source fusion[J]. Electric Power, 2018, 51(2): 39-46. (in Chinese) | |
[33] | 张俊, 徐箭, 许沛东, 等. 人工智能大模型在电力系统运行控制中的应用综述及展望[J]. 武汉大学学报(工学版), 2023, 56(11): 1368-1379. |
ZHANG J, XU J, XU P D, et al. Overview and prospect of application of artificial intelligence large model in power system operation control[J]. Engineering Journal of Wuhan University, 2023, 56(11): 1368-1379. (in Chinese) | |
[34] | 乔骥, 王新迎, 闵睿, 等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报, 2020, 40(18): 5837-5848. |
QIAO J, WANG X Y, MIN R, et al. Framework and key technologies of knowledge-graph-based fault handling system in power grid[J]. Proceedings of the CSEE, 2020, 40(18): 5837-5848. (in Chinese) | |
[35] | 余建明, 王小海, 张越, 等. 面向智能调控领域的知识图谱构建与应用[J]. 电力系统保护与控制, 2020, 48(3): 29-35. |
YU J M, WANG X H, ZHANG Y, et al. Construction and application of knowledge graph for intelligent dispatching and control[J]. Power System Protection and Control, 2020, 48(3): 29-35. (in Chinese) | |
[36] | 郭榕, 杨群, 刘绍翰, 等. 电网故障处置知识图谱构建研究与应用[J]. 电网技术, 2021, 45(6): 2092-2100. |
GUO R, YANG Q, LIU S H, et al. Construction and application of power grid fault handing knowledge graph[J]. Power System Technology, 2021, 45(6): 2092-2100. (in Chinese) | |
[37] | 李金星, 李湘, 高天露, 等. 基于电网多元信息知识图谱的故障处置研究及应用[J]. 电力信息与通信技术, 2021, 19(11): 30-38. |
LI J X, LI X, GAO T L, et al. Research and application of fault handling based on power grid multivariate information knowledge graph[J]. Electric Power Information and Communication Technology, 2021, 19(11): 30-38. (in Chinese) | |
[38] | 叶欣智, 尚磊, 董旭柱, 等. 面向配电网故障处置的知识图谱研究与应用[J]. 电网技术, 2022, 46(10): 3739-3748. |
YE X Z, SHANG L, DONG X Z, et al. Knowledge graph for distribution network fault handling[J]. Power System Technology, 2022, 46(10): 3739-3748. (in Chinese) | |
[39] | 苑菲, 杨红英, 刘道伟, 等. 基于知识图谱的电网调度运行优化管理系统[J]. 电力信息与通信技术, 2023, 21(3): 17-25. |
YUAN F, YANG H Y, LIU D W, et al. Power grid dispatching operation optimization management system based on knowledge graph[J]. Electric Power Information and Communication Technology, 2023, 21(3): 17-25. (in Chinese) | |
[40] | 田波, 张越, 蒙飞, 等. 电网故障处置信息自适应理解框架及关键技术[J]. 中国电力, 2024, 57(7): 188-195. |
TIAN B, ZHANG Y, MENG F, et al. Adaptive understanding framework and key technology of power grid fault disposal information[J]. Electric Power, 2024, 57(7): 188-195. (in Chinese) | |
[41] | ZHANG Z C, WANG M Y, MA M Y, et al. MSFC: deep feature compression in multi-task network[C]// 2021 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2021: 1-6. |
[42] | 张云飞, 贺丽君, 王子溪, 等. 面向机器视觉任务的多尺度图像特征压缩算法[J]. 西安交通大学学报, 2023, 57(12): 1-10. |
ZHANG Y F, HE L J, WANG Z X, et al. Image multi-scale feature compression algorithm for machine vision tasks[J]. Journal of Xi'an Jiaotong University, 2023, 57(12): 1-10. (in Chinese) | |
[43] | 郭敬东, 陈彬, 王仁书, 等. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23. |
GUO J D, CHEN B, WANG R S, et al. YOLO-based real-time detection of power line poles from unmanned aerial vehicle inspection vision[J]. Electric Power, 2019, 52(7): 17-23. (in Chinese) | |
[44] | 仲林林, 胡霞, 刘柯妤. 基于改进生成对抗网络的无人机电力杆塔巡检图像异常检测[J]. 电工技术学报, 2022, 37(9): 2230-2240, 2262. |
ZHONG L L, HU X, LIU K Y. Power tower anomaly detection from unmanned aerial vehicles inspection images based on improved generative adversarial network[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2230-2240, 2262. (in Chinese) | |
[45] | SIDDIQUI Z A, PARK U. A drone based transmission line components inspection system with deep learning technique[J]. Energies, 2020, 13(13): 3348. |
[46] | ZU G X, WU G L, ZHANG C, et al. Detection of common foreign objects on power grid lines based on Faster R-CNN algorithm and data augmentation method[J]. Journal of Physics: Conference Series, 2021, 1746: 012039. |
[47] | 罗潇, 於锋, 彭勇. 基于深度学习的无人机电网巡检缺陷检测研究[J]. 电力系统保护与控制, 2022, 50(10): 132-139. |
LUO X, YU F, PENG Y. UAV power grid inspection defect detection based on deep learning[J]. Power System Protection and Control, 2022, 50(10): 132-139. (in Chinese) | |
[48] |
阎光伟, 刘润泽, 焦润海, 等. 基于改进Cascade RCNN的输电线路防振锤脱落检测方法[J]. 图学学报, 2023, 44(5): 849-860.
DOI |
YAN G W, LIU R Z, JIAO R H, et al. Detection method of dropped anti-vibration hammer for transmission line based on improved Cascade RCNN[J]. Journal of Graphics, 2023, 44(5): 849-860. (in Chinese) | |
[49] | 刘敏, 周国亮, 王红旭, 等. 基于稀疏重构注意力机制的绝缘子缺陷检测方法[J]. 广东电力, 2024, 37(5): 104-111. |
LIU M, ZHOU G L, WANG H X, et al. Insulator defect detection based on sparse reconstruction dual attention mechanism[J]. Guangdong Electric Power, 2024, 37(5): 104-111. (in Chinese) | |
[50] | SUN S N, ZHANG B B, XIE L, et al. An unsupervised deep domain adaptation approach for robust speech recognition[J]. Neurocomputing, 2017, 257: 79-87. |
[51] | ZHU L Z, CHEN L M, ZHAO D H, et al. Emotion recognition from Chinese speech for smart affective services using a combination of SVM and DBN[J]. Sensors, 2017, 17(7): 1694. |
[52] | 朱龙珠, 徐宏, 刘莉莉. 基于深度学习的95598重大服务事件识别研究[J]. 电力信息与通信技术, 2018, 16(11): 19-23. |
ZHU L Z, XU H, LIU L L. Research on recognition of 95598 significant service events based on deep learning[J]. Electric Power Information and Communication Technology, 2018, 16(11): 19-23. (in Chinese) | |
[53] | 程超, 葛维, 郭兰柯, 等. 基于深度学习的新型电力智能交互平台多任务集成模型研究[J]. 电测与仪表, 2023, 60(6): 81-85, 109. |
CHENG C, GE W, GUO L K, et al. Research on multi-task ensemble model based on deep learning for novel power intelligent interaction platform[J]. Electrical Measurement & Instrumentation, 2023, 60(6): 81-85, 109. (in Chinese) | |
[54] | LUO L C, HUANG W H, ZENG Q, et al. Learning personalized end-to-end goal-oriented dialog[EB/OL]. (2018-11-12) [2024-07-07]. https://arxiv.org/abs/1811.04604. |
[55] |
王豪, 郭斌, 郝少阳, 等. 基于深度学习的个性化对话内容生成方法[J]. 图学学报, 2020, 41(2): 210-216.
DOI |
WANG H, GUO B, HAO S Y, et al. Personalized dialogue content generation based on deep learning[J]. Journal of Graphics, 2020, 41(2): 210-216. (in Chinese)
DOI |
|
[56] | 俞学豪, 赵子岩, 马应龙, 等. 基于BR和GBDT的电力信息通信客服系统多标签文本分类[J]. 电力系统自动化, 2021, 45(11): 144-151. |
YU X H, ZHAO Z Y, MA Y L, et al. Multi-label text classification for power ICT custom service system based on binary relevance and gradient boosting decision tree[J]. Automation of Electric Power Systems, 2021, 45(11): 144-151. (in Chinese) | |
[57] | XIE F, LUO Y, WANG L, et al. A customer service quality control platform based on user behavior tracking[C]// 2021 IEEE 21st International Conference on Communication Technology. New York: IEEE Press, 2021: 1148-1152. |
[58] | 荣龙, 花岗, 李然, 等. 电力营业厅供电服务系统人脸识别关键技术研究[J]. 自动化技术与应用, 2022, 41(5): 141-144. |
RONG L, HUA G, LI R, et al. Research on key technology of face recognition in power supply service system of power business hall[J]. Techniques of Automation and Applications, 2022, 41(5): 141-144. (in Chinese) | |
[59] | 王楚, 王忠锋, 徐志远, 等. 电力营业厅智能服务机器人个性化情感分析技术研究[J]. 供用电, 2020, 37(6): 21-26. |
WANG C, WANG Z F, XU Z Y, et al. Research on personalized sentiment analysis technology of intelligent service robot in electric power business hall[J]. Distribution Utilization, 2020, 37(6): 21-26. (in Chinese) | |
[60] | FU L, LI X X, ZI L B. Research on modeling units of transformer transducer for mandarin speech recognition[EB/OL]. (2020-04-26) [2024-07-07]. https://arxiv.org/abs/2004.13522. |
[61] | 张明, 张芳慧, 宗佳平, 等. 基于轻量级网络的人脸检测及嵌入式实现[J]. 图学学报, 2022, 43(2): 239-246. |
ZHANG M, ZHANG F H, ZONG J P, et al. Face detection and embedded implementation of lightweight network[J]. Journal of Graphics, 2022, 43(2): 239-246. (in Chinese)
DOI |
|
[62] | 刘冀辰, 王磊, 黄一鸣, 等. 一种业务办理状态提示方法、装置、存储介质及电子设备: 中国, 202410179428.0[P]. 2024-02-18. |
LIU J C, WANG L, HUANG Y M, et al. Business handling state prompting method and device, storage medium and electronic equipment: China, 202410179428.0[P]. 2024-02-18. (in Chinese) |
[1] | 杨浩中, 孔笑宇, 辜睿坤, 汪淼. 虚拟现实中的大模型技术研究进展与趋势[J]. 图学学报, 2024, 45(6): 1117-1131. |
[2] | 李琼, 考月英, 张莹, 徐沛. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
[3] | 吴精乙, 景峻, 贺熠凡, 张世渝, 康运锋, 唐维, 孔德兰, 刘向栋. 基于多模态大模型的高速公路场景交通异常事件分析方法[J]. 图学学报, 2024, 45(6): 1266-1276. |
[4] | 吴沛宸, 袁立宁, 胡皓, 刘钊, 郭放. 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[5] | 王江安, 黄乐, 庞大为, 秦林珍, 梁温茜. 基于自适应聚合循环递归的稠密点云重建网络[J]. 图学学报, 2024, 45(1): 230-239. |
[6] | 李泓萱, 张松洋, 任博. 基于多级可逆神经网络的大容量裁剪稳健型图像隐写技术[J]. 图学学报, 2023, 44(6): 1149-1161. |
[7] | 毕春艳, 刘越. 基于深度学习的视频人体动作识别综述[J]. 图学学报, 2023, 44(4): 625-639. |
[8] | 杨柳, 吴晓群. 基于深度学习的三维形状补全研究综述[J]. 图学学报, 2023, 44(2): 201-215. |
[9] | 王江安, 庞大为, 黄 乐, 秦林珍. 基于多尺度特征递归卷积的稠密点云重建网络 [J]. 图学学报, 2022, 43(5): 875-883. |
[10] | 梁振宇, 华嘉皓, 陈浩龙, 邓逸川.
基于计算机视觉的建筑施工期临时结构损伤识别方法
[J]. 图学学报, 2022, 43(4): 608-615. |
[11] | 熊琛, 陈立斌, 李林泽, 许镇, 赵杨平. 基于计算机视觉与 BIM 的裂缝可视化管理方法[J]. 图学学报, 2022, 43(4): 721-728. |
[12] | 高铭, 张荷花, 张庭瑞, 张轩铭. 基于深度学习的公共建筑像素施工图空间识别[J]. 图学学报, 2022, 43(2): 189-196. |
[13] | 段锐, 邓晖, 邓逸川. ICT 支持的塔吊安全管理框架—— 回顾与展望[J]. 图学学报, 2022, 43(1): 11-20. |
[14] | 张宇航 , 苏 成 , 邓逸川 , . 基于欧拉运动放大算法的桥梁索力测试方法研究[J]. 图学学报, 2021, 42(6): 941-947. |
[15] | 高文婷, 刘 越. 面向移动增强现实的实时深度学习目标检测方法综述[J]. 图学学报, 2021, 42(4): 525-534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||