欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (5): 922-929.DOI: 10.11996/JG.j.2095-302X.2024050922

• 图像处理与计算机视觉 • 上一篇    下一篇

基于注意力特征融合的视频异常行为检测

吴沛宸1(), 袁立宁2,3, 胡皓1, 刘钊4, 郭放1()   

  1. 1.中国人民公安大学信息网络安全学院,北京 100038
    2.中国人民公安大学国家安全学院,北京 100038
    3.广西警察学院信息技术学院,广西 南宁 530028
    4.中国人民公安大学网络空间安全与法治协同创新中心,北京 100038
  • 收稿日期:2024-05-08 修回日期:2024-06-25 出版日期:2024-10-31 发布日期:2024-10-31
  • 通讯作者:郭放(1988-),女,讲师,博士。主要研究方向为视频图像技术、计算机视觉。E-mail:guofang@ppsuc.edu.cn
  • 第一作者:吴沛宸(1997-),男,硕士研究生。主要研究方向为计算机视觉。E-mail:m13209406252@163.com
  • 基金资助:
    中国人民公安大学安全防范工程双一流创新研究专项(2023SYL08);广西哲学社会科学研究课题项目(23FTQ005);广西壮族自治区公安厅专项课题(2023GAQN092)

Video anomaly detection based on attention feature fusion

WU Peichen1(), YUAN Lining2,3, HU Hao1, LIU Zhao4, GUO Fang1()   

  1. 1. College of Information and Network Security, People’s Public Security University of China, Beijing 100038, China
    2. School of National Security, People’s Public Security University of China, Beijing 100038, China
    3. School of Information Technology, Guangxi Police College, Nanning Guangxi 530028, China
    4. Collaborative Innovation Center for Network Security and Rule of Law, People’s Public Security University of China, Beijing 100038, China
  • Received:2024-05-08 Revised:2024-06-25 Published:2024-10-31 Online:2024-10-31
  • Contact: GUO Fang (1988-), lecturer, Ph.D. Her main research interests cover the technology of video and computer vision.
    E-mail:guofang@ppsuc.edu.cn
  • First author:WU Peichen (1997-), master student. His main research interest covers computer vision. E-mail:m13209406252@163.com
  • Supported by:
    Double First-Class Innovation Research Project for People’s Public Security University of China(2023SYL08);The Social Science Fund of Guangxi(23FTQ005);Public Security Department Project of Guangxi(2023GAQN092)

摘要:

当前以多头自注意力为代表的基于注意力机制的特征融合方法在很大程度上取决于特征间的相关性,其跨域融合能力有限,且特征融合后由于不同特征的域间差异,导致时空感知能力不足,有效融合2种跨域特征仍面临挑战。针对RGB特征和光流特征跨域表达能力不足、融合后特征的时空感知能力弱等问题,提出了一种基于注意力特征融合的视频异常行为检测方法。首先采用一种轻量级注意力特征融合模块(LAFF)构筑融合机制,进行RGB和光流特征的融合,进而在增强融合后特征表达能力的同时减少网络参数量,提高异常检测算法性能。在全局时空感知阶段,通过多分支卷积模块(DBB)增强特征时空感知能力,同时需兼顾计算复杂度和检测效果。在UCSD Ped2数据集上取得了99.85%的识别效果,在CUHK Avenue和LAD 2000数据集上表现同样良好,验证了该方法的有效性。

关键词: 计算机视觉, 异常行为检测, 特征融合, 注意力机制, 多分支卷积

Abstract:

Currently, feature fusion methods based on attention mechanisms, such as multi-head self-attention, largely rely on the correlation between features, with limited cross-domain fusion capabilities. Additionally, due to existing domain differences among various features, the spatiotemporal perception capability of the fused features is insufficient. To address the insufficient cross-domain expression capability of RGB and optical flow features and the weak spatiotemporal perception capability of the fused features, a video anomaly detection method based on attentional feature fusion was proposed. Firstly, a lightweight attentional feature fusion module (LAFF) was employed to construct the fusion mechanism, combining RGB and optical flow features, enhancing the feature expression capabilities while reducing the network’s parameter count and improving anomaly detection algorithm performance. Then, in the global spatiotemporal perception stage, a diverse branch block (DBB) was utilized to enhance the spatiotemporal perception capabilities of the features, while considering computational complexity and detection effectiveness. Finally, the proposed method achieved a recognition rate of 99.85% on the UCSD Ped2 dataset and demonstrated similarly strong performance on the CUHK Avenue and LAD 2000 datasets, validating the effectiveness of the approach.

Key words: computer vision, video anomaly detection, feature fusion, attention mechanism, diverse branch block

中图分类号: