[1] |
徐海涛. 基于深度学习的视频异常行为检测研究[D]. 北京: 北京交通大学, 2022.
|
|
XU H T. Research on video anomalous behavior detection based on deep learning[D]. Beijing: Beijing Jiaotong University, 2022 (in Chinese).
|
[2] |
LIU Y, YANG D K, WANG Y, et al. Generalized video anomaly event detection: systematic taxonomy and comparison of deep models[EB/OL]. [2024-03-11]. http://arxiv.org/abs/2302.05087.
|
[3] |
CHANG Y P, TU Z G, XIE W, et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern Recognition, 2022, 122: 108213.
|
[4] |
吕浩, 易鹏飞, 刘瑞, 等. 用于视频异常检测的时序多尺度自编码器[J]. 图学学报, 2022, 43(2): 223-229.
|
|
LYU H, YI P F, LIU R, et al. Sequential multi-scale autoencoder for video anomaly detection[J]. Journal of Graphics, 2022, 43(2): 223-229 (in Chinese).
DOI
|
[5] |
SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6479-6488.
|
[6] |
WAN B Y, FANG Y M, XIA X, et al. Weakly supervised video anomaly detection via center-guided discriminative learning[C]// 2020 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2020: 1-6.
|
[7] |
LIU W, LUO W, LI Z, et al. Margin learning embedded prediction for video anomaly detection with a few anomalies[C]// IJCAI’19: The 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 3023-3030.
|
[8] |
WAN B Y, JIANG W H, FANG Y M, et al. Anomaly detection in video sequences: a benchmark and computational model[J]. IET Image Processing, 2021, 15(14): 3454-3465.
|
[9] |
肖进胜, 申梦瑶, 江明俊, 等. 融合包注意力机制的监控视频异常行为检测[J]. 自动化学报, 2022, 48(12): 2951-2959.
|
|
XIAO J S, SHEN M Y, JIANG M J, et al. Abnormal behavior detection algorithm with video-bag attention mechanism in surveillance video[J]. Acta Automatica Sinica, 2022, 48(12): 2951-2959 (in Chinese).
|
[10] |
ZHOU Y Z, SUN X Y, LUO C, et al. Spatiotemporal fusion in 3D CNNs: a probabilistic view[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9826-9835.
|
[11] |
张和为. 基于特征融合网络的视频人脸识别技术研究[D]. 桂林: 桂林电子科技大学, 2022.
|
|
ZHANG H W. Research on video face recognition technology based on feature fusion network[D]. Guilin: Guilin University of Electronic Technology, 2022 (in Chinese).
|
[12] |
程相贵, 刘钊, 郭放. 结合双流I3D和注意力机制的视频异常事件检测[J]. 信息与电脑: 理论版, 2022, 34(24): 65-68.
|
|
CHENG X G, LIU Z, GUO F. Video anomaly event detection combining dual-stream I3D and attention mechanism[J]. Information & Computer: Theory Edition, 2022, 34(24): 65-68 (in Chinese).
|
[13] |
MA X, JI Z X, NIU S J, et al. MS-CAM: multi-scale class activation maps for weakly-supervised segmentation of geographic atrophy lesions in SD-OCT images[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3443-3455.
|
[14] |
黄少年, 文沛然, 全琪, 等. 基于多支路聚合的帧预测轻量化视频异常检测[J]. 图学学报, 2023, 44(6): 1173-1182.
DOI
|
|
HUANG S N, WEN P R, QUAN Q, et al. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection[J]. Journal of Graphics, 2023, 44(6): 1173-1182 (in Chinese).
|
[15] |
DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10881-10890.
|
[16] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1-9.
|
[17] |
闫善武, 肖洪兵, 王瑜, 等. 融合行人时空信息的视频异常检测[J]. 图学学报, 2023, 44(1): 95-103.
DOI
|
|
YAN S W, XIAO H B, WANG Y, et al. Video anomaly detection combining pedestrian spatiotemporal information[J]. Journal of Graphics, 2023, 44(1): 95-103 (in Chinese).
|
[18] |
ROKA S, DIWAKAR M. DSLSTM: a deep convolutional encoder-decoder architecture for abnormality detection in video surveillance[J]. Cluster Computing, 2024(17): 4925-4940.
|
[19] |
LI K C, WANG Y L, HE Y N, et al. UniFormerV2: unlocking the potential of image ViTs for video understanding[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 1632-1643.
|
[20] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141.
|
[21] |
LV H, YUE Z Q, SUN Q R, et al. Unbiased multiple instance learning for weakly supervised video anomaly detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 8022-8031.
|
[22] |
PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 14360-14369.
|
[23] |
ZHAO M Y, LIU Y, LIU J, et al. Exploiting spatial-temporal correlations for video anomaly detection[C]// 2022 26th International Conference on Pattern Recognition. New York: IEEE Press, 2022: 1727-1733.
|