欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1277-1288.DOI: 10.11996/JG.j.2095-302X.2024061277

• “大模型与图学技术及应用”专题 • 上一篇    下一篇

基于人工智能生成内容的产品造型设计与评价方法

路鹏1(), 吴凡2, 唐建1()   

  1. 1.大连理工大学建筑与艺术学院,辽宁 大连 116024
    2.大连工业大学艺术设计学院,辽宁 大连 116034
  • 收稿日期:2024-07-08 接受日期:2024-09-08 出版日期:2024-12-31 发布日期:2024-12-24
  • 通讯作者:唐建(1964-),男,教授,博士。主要研究方向为艺术设计及其理论。E-mail:tangjian@dlut.edu.cn
  • 第一作者:路鹏(1990-),男,助理研究员,博士。主要研究方向为工业设计及其理论。E-mail:lupengID@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(52405252)

Product design and evaluation methods based on AI-generated content

LU Peng1(), WU Fan2, TANG Jian1()   

  1. 1.School of Architecture and Art, Dalian University of Technology, Dalian Liaoning 116024, China
    2.School of Art and Design, Dalian Polytechnic University, Dalian Liaoning 116034, China
  • Received:2024-07-08 Accepted:2024-09-08 Published:2024-12-31 Online:2024-12-24
  • Contact: TANG Jian (1964-), professor, Ph.D. His main research interests cover art design and its theory. E-mail:tangjian@dlut.edu.cn
  • First author:LU Peng (1990-), associate researcher, Ph.D. His main research interests cover industrial design and its theory. E-mail:lupengID@dlut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52405252)

摘要:

生成式人工智能(GAI)已然成为产品设计的新质生产力,显著提高了设计效率。然而,目前尚缺乏系统的应用方法以及多类型GAI协同应用的案例。为彰显GAI对产品设计的革新作用,提出基于人工智能生成内容(AIGC)的造型设计和评价方法。首先,应用ChatGPT分析用户的感性需求,将其归纳为造型设计的目标意象。同时,将ChatGPT作为Midjourney的提示词生成器,以生成产品必要的提示词短语。其次,依据目标意象与必要提示词短语,利用Midjourney构建造型参考资料库,并通过感性问卷从中筛选出备选方案。然后,结合灰关联分析(GRA)和层次分析(AHP)评价备选方案,以筛选出最佳造型,并使用Rhino优化人机关系。最后,使用Stable Diffusion生成最佳造型的渲染效果。以摩托车和吸尘器为案例,对该方法进行了论证。研究发现,多类型生成式人工智能协作模式在用户意象需求分析、造型意象转化和造型细节优化方面表现突出,能够革新造型设计流程和提高设计效率。该方法为产品造型设计师提供了基于AIGC的设计方法,并建立了AIGC的量化评价方法。

关键词: 造型设计, 生成式人工智能, 设计评价, 灰色关联分析法, 层次分析法

Abstract:

Generative artificial intelligence (GAI) has become a transformative force in product design, significantly enhancing design efficiency. However, systematic application methods and cases of collaborative multi-type GAI application examples remain scarce. To highlight the innovative role of GAI in product design, a method based on AI-generated content (AIGC) for product form design and evaluation was proposed. First, ChatGPT was utilized to capture the emotional needs of target product users and summarize them into design target imageries. Additionally, ChatGPT served as a prompt generator for Midjourney, generating necessary prompt phrases for the target product. Midjourney constructed a reference library for product forms using these target imageries and prompt phrases. Perceptual questionnaires were then utilized to select distinctive designs as alternatives. Next, the grey relational analysis (GRA) and analytic hierarchy process (AHP) methods were employed to evaluate these alternatives and select the optimal design, with Rhino used to optimize human-machine interaction. Finally, stable diffusion was utilized to quickly generate rendering effects for the optimal design. A case study on electric motorcycles and household vacuum cleaners validated the proposed method. It was found that the collaborative model of multi-type generative AI excelled in analyzing user needs, transforming design concepts, and optimizing design details. This approach revolutionized traditional design processes and improved design efficiency. The proposed method provided product designers with an AIGC-based design approach and established a quantitative evaluation method for AIGC.

Key words: form design, generative AI, design evaluation, grey relationship analysis, analytic hierarchy process

中图分类号: