欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1289-1300.DOI: 10.11996/JG.j.2095-302X.2024061289

• 图像处理与计算机视觉 • 上一篇    下一篇

基于密度图多目标追踪的时空数据可视化

宋思程1,2(), 陈辰3, 李晨辉1, 王长波1()   

  1. 1.华东师范大学计算机科学与技术学院,上海 200062
    2.华东师范大学上海智能教育研究院,上海 200062
    3.华东师范大学软件工程学院,上海 200062
  • 收稿日期:2024-07-08 接受日期:2024-09-06 出版日期:2024-12-31 发布日期:2024-12-24
  • 通讯作者:王长波(1976-),男,教授,博士。主要研究方向为计算机图形学、数据可视分析、数字媒体与虚拟现实。E-mail:cbwang@cs.ecnu.edu.cn
  • 第一作者:宋思程(1997-),男,博士研究生。主要研究方向为数据可视化、深度学习。E-mail:scsong@stu.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金(62072183);上海自然科学基金面上项目(24ZR1418300);上海市长三角科技创新共同体领域项目(23002400400)

Spatiotemporal data visualization based on density map multi-target tracking

SONG Sicheng1,2(), CHEN Chen3, LI Chenhui1, WANG Changbo1()   

  1. 1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
    2. Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai 200062, China
    3. Software Engineering Institute, East China Normal University, Shanghai 200062, China
  • Received:2024-07-08 Accepted:2024-09-06 Published:2024-12-31 Online:2024-12-24
  • Contact: WANG Changbo (1976-), professor, Ph.D. His main research directions cover computer graphics, data visualization analysis, digital media, and virtual reality. E-mail:cbwang@cs.ecnu.edu.cn
  • First author:SONG Sicheng (1997-), PhD candidate. His main research interests cover data visualization and deep learning. E-mail:scsong@stu.ecnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62072183);Shanghai Natural Science Foundation(24ZR1418300);Shanghai Yangtze River Delta Science and Technology Innovation Community Project(23002400400)

摘要:

时空数据追踪的可视化问题已经受到了广泛的关注,其研究重点在于展示数据的动态细节,并确保轨迹与观测结果的一致性。为此,提出了一种融合深度学习与传统追踪技术的模型,用于执行追踪任务,从而提高可视化的速度和准确度。首先,生成一个高质量的柏林噪声数据集并在该数据集上训练了一个多目标追踪模型。其次,提出了双阶段、多模型的深度学习框架来增强对动态场景的分析深度。最后,为了能够连续地展现详尽的追踪信息,提出了一种可以增强追踪信息的视觉效果结合轨迹和矢量场的可视化解决方案。在不同的案例中展示了该方法的有用性和鲁棒性,并从多个方面进行了量化评估和比较。结果表明该方法可以帮助用户在不同场景中理解多目标追踪信息。

关键词: 照数据可视化, 深度学习, 时空数据, 多目标跟踪

Abstract:

The spatiotemporal data tracking visualization has received widespread attention. The focus of this research is on depicting the dynamic details of the data and ensuring trajectory consistency with the observation results. In this paper, a model that combined deep learning with traditional tracking techniques was proposed to perform tracking tasks, thereby improving the speed and accuracy of visualization. First, a high-quality Perlin noise dataset was generated, on which a multi-target tracking model was trained. Second, a two-stage, multi-model deep learning framework was proposed to enhance the analysis depth of dynamic scenes. Finally, in order to continuously display detailed tracking information, a visualization solution that combined trajectories and vector fields was introduced to enhance the visual effect of tracking information. Different cases in this study demonstrated the usefulness and robustness of the proposed method, quantitatively evaluating and omparing the method from multiple aspects. The results showed that the method proposed in this study can help users in understanding multi-target tracking information in different scenarios.

Key words: data visualization, deep learning, spatial-temporal data, multiple-object tracking

中图分类号: