欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (2): 300-311.DOI: 10.11996/JG.j.2095-302X.2025020300

• 图像处理与计算机视觉 • 上一篇    下一篇

MSFAFuse:基于多尺度特征信息与注意力机制的SAR和可见光图像融合模型

潘树焱(), 刘立群()   

  1. 甘肃农业大学信息科学技术学院,甘肃 兰州 730070
  • 收稿日期:2024-07-29 接受日期:2024-12-04 出版日期:2025-04-30 发布日期:2025-04-24
  • 通讯作者:刘立群(1982-),女,教授,硕士。主要研究方向为智能计算和深度学习等。E-mail:llqhjy@126.com
  • 第一作者:潘树焱(2002-),男,硕士研究生。主要研究方向为深度学习和数字图像处理。E-mail:pansy@st.gsau.edu.cn
  • 基金资助:
    国家自然科学基金(32460440);甘肃省高校教师创新基金(2023A-051);甘肃农业大学青年导师基金(GAU-QDFC-2020-08);甘肃省科技计划项目(20JR5RA032)

MSFAFuse: sar and optical image fusion model based on multi-scale feature information and attention mechanism

PAN Shuyan(), LIU Liqun()   

  1. College of Information Science and Technology, Gansu Agricultural University, Lanzhou Gansu 730070, China
  • Received:2024-07-29 Accepted:2024-12-04 Published:2025-04-30 Online:2025-04-24
  • First author:PAN Shuyan (2002-), master student. His main research interests cover deep learning and digital image processing. E-mail:pansy@st.gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32460440);Gansu Provincial University Teacher Innovation Fund Project(2023A-051);Young Supervisor Fund of Gansu Agricultural University(GAU-QDFC-2020-08);Gansu Science and Technology Plan(20JR5RA032)

摘要:

针对单一成像原理得到的遥感图像无法提供丰富信息的问题,异源遥感图像融合技术应运而生。合成孔径雷达图像成像不受云层、天气等因素影响,但缺乏目视观测能力;可见光图像成像易受恶劣环境影响,但拥有直视效果及目标解译能力。将二者融合可以充分利用各自优势,得到包含更多特征信息并具有目视观测能力的高质量图像。为充分利用异源图像不同尺度特征,提出一种基于多尺度特征信息与注意力机制的SAR和可见光图像融合模型(MSFAFuse)。首先,引入鲁棒特征下采样组成特征提取部分,得到异源图像对应的多尺度特征。其次,使用特征增强模块来增强不同尺度异源特征中的结构特征及显著区域特征。然后,使用基于特征信息引导以及L1-Norm的双分支融合模块将得到的异源多尺度特征按尺度进行两两融合。最后,将不同尺度的融合结果输入图像重构模块,进行图像重建,最终获得融合图像。实验表明,MSFAFuse模型可以在保留更多细节及结构信息的同时平滑地增强突出特征。与现有融合方法相比,该模型在10种不同指标上实现了较好的效果,可以有效地融合可见光图像与SAR图像,为二者融合的发展提供了新思路,有助于推动未来遥感图像融合技术的发展。

关键词: 图像融合, 多尺度特征, Efficient additive attention, 遥感, 深度学习

Abstract:

In response to the issue that remote sensing images obtained from a single imaging principle cannot provide rich information, heterogeneous remote sensing image fusion technology has emerged. The imaging of synthetic aperture radar images is not affected by factors such as clouds and weather, but lacks visual observation capability. The imaging of optical images is susceptible to harsh environments, but offer direct viewing effects and target interpretation capabilities. Integrating the two can fully leverage their respective advantages to obtain high-quality images that contain more feature information and possess visual observation capabilities. To fully utilize the different scale features of heterogeneous images, a SAR and optical image fusion model based on multi-scale feature information and attention mechanism (MSFAFuse) was proposed. Firstly, robust feature downsampling was introduced to form the feature extraction part, obtaining multi-scale features corresponding to heterogeneous images. Secondly, a feature enhancement module was employed to enhance the structural features and salient regional features in heterogeneous features at different scales. Then, using a dual-branch fusion module guided by feature information and L1-Norm, was used to fuse the obtained heterogeneous multi-scale features pairwise according to scale. Finally, the fusion results of different scales were input into the image reconstruction module for image reconstruction, resulting in the final fused image. Experiments have shown that the MSFAFuse model can smoothly enhance prominent features while preserving more details and structural information. Compared with existing fusion methods, the model has shown better performance across 10 different indicators. This demonstrated that the MSFAFuse model can effectively fuse optical images and SAR images, providing new insights for the development of their fusion and contributing to the advancement of future remote sensing image fusion technologies.

Key words: image fusion, multi-scale feature, Efficient additive attention, remote sense, deep learning

中图分类号: