[1] |
宋平丽. 基于视频图像的桥梁裂缝检测[D]. 武汉: 武汉理工大学, 2010.
|
|
SONG P L. Crack detection of bridge on video image[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese).
|
[2] |
周林. 基于图像处理的路面裂缝检测系统设计与研究[D]. 太原: 太原理工大学, 2013.
|
|
ZHOU L. Research and design of pavement crack detection system based on image processing[D]. Taiyuan: Taiyuan University of Technology, 2013 (in Chinese).
|
[3] |
孙朝云, 裴莉莉, 李伟, 等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报: 自然科学版, 2020, 48(2): 84-93.
|
|
SUN Z Y, PEI L L, LI W, et al. Pavement sealed crack detection method based on improved faster R-CNN[J]. Journal of South China University of Technology: Natural Science Edition, 2020, 48(2): 84-93 (in Chinese).
|
[4] |
刘凡, 王君锋, 陈峙宇, 等. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726.
|
|
LIU F, WANG J F, CHEN Z Y, et al. Parallel attention based UNet for crack detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726 (in Chinese).
|
[5] |
张政超. 改进YOLOv5的轻量级带钢表面缺陷检测[J]. 计算机系统应用, 2023, 32(6): 278-285.
|
|
ZHANG Z C. Lightweight strip steel defect detection based on improved YOLOv5[J]. Computer Systems & Applications, 2023, 32(6): 278-285 (in Chinese).
|
[6] |
蒋博, 万毅, 谢显中. 改进YOLOv5s的轻量化钢材表面缺陷检测模型[J]. 计算机科学, 2023, 50(S2): 230900113.
|
|
JIANG B, WAN Y, XIE X Z. Improved YOLOv5s lightweight steel surface defect detection model[J]. Computer Science, 2023, 50(S2): 230900113 (in Chinese).
|
[7] |
贾玉进, 张振程, 李浠铭, 等. 基于轻量化YOLOv5网络的输电线路绝缘子缺陷检测[J]. 电力学报, 2024, 39(1): 36-44.
|
|
JIA Y J, ZHANG Z C, LI X M, et al. Defect detection of insulator on transmission line based on lightweight YOLOv5 network[J]. Journal of Electric Power, 2024, 39(1): 36-44 (in Chinese).
|
[8] |
HOWARD A G, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 1314-1324.
|
[9] |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6848-6856.
|
[10] |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1577-1586.
|
[11] |
马燕婷, 赵红东, 阎超, 等. 改进YOLOv5网络的带钢表面缺陷检测方法[J]. 电子测量与仪器学报, 2022, 36(8): 150-157.
|
|
MA Y T, ZHAO H D, YAN C, et al. Strip steel surface defect detection method by improved YOLOv5 network[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(8): 150-157 (in Chinese).
|
[12] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI
|
|
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese).
|
[13] |
耿焕同, 刘振宇, 蒋骏, 等. 基于改进YOLOv8的嵌入式道路裂缝检测算法[J]. 计算机应用, 2024, 44(5): 1613-1618.
DOI
|
|
GENG H T, LIU Z Y, JIANG J, et al. Embedded road crack detection algorithm based on improved YOLOv8[J]. Journal of Computer Applications, 2024, 44(5): 1613-1618 (in Chinese).
DOI
|
[14] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI
|
|
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI
|
[15] |
YANG L X, ZHANG R Y, LI L D, et al. SimAM:a simple, parameter-free attention module for convolutional neural networks[C]// The 38th International Conference on Machine Learning. New York: PLMR, 2021: 11863-11874.
|
[16] |
WANG K X, LIEW J H, ZOU Y T, et al. PANet: few-shot image semantic segmentation with prototype alignment[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9196-9205.
|
[17] |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10778-10787.
|
[18] |
LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 6153-6162.
|
[19] |
ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic Road Damage Detetion[EB/OL]. [2024-01-11]. https://arxiv.org/abs/2209.08538.
|
[20] |
ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 10323-10333.
|
[21] |
MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 3138-3147.
|
[22] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717.
|