欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (5): 913-921.DOI: 10.11996/JG.j.2095-302X.2024050913

• 图像处理与计算机视觉 • 上一篇    下一篇

基于DBBR-YOLO的光伏电池表面缺陷检测

刘义艳1(), 郝婷楠1, 贺晨2, 常英杰1()   

  1. 1.长安大学能源与电气工程学院,陕西 西安 710018
    2.西安市轨道交通集团有限公司运营分公司,陕西 西安 710016
  • 收稿日期:2024-04-09 修回日期:2024-08-14 出版日期:2024-10-31 发布日期:2024-10-31
  • 通讯作者:常英杰(1992-),男,讲师,博士。主要研究方向为大数据处理、机器学习和多相流等。E-mail:yj.chang@chd.edu.cn
  • 第一作者:刘义艳(1981-),女,副教授,博士。主要研究方向为电网大数据处理和电能质量分析等。E-mail:yyliu1@chd.edu.cn
  • 基金资助:
    陕西省重点研发计划项目(2021GY-098)

Photovoltaic cell surface defect detection based on DBBR-YOLO

LIU Yiyan1(), HAO Tingnan1, HE Chen2, CHANG Yingjie1()   

  1. 1. School of Energy and Electrical Engineering, Chang’an University, Xi’an Shaanxi 710018, China
    2. Operation Branch of Xi’an Rail Transit Group Co., Ltd, Xi’an Shaanxi 710016, China
  • Received:2024-04-09 Revised:2024-08-14 Published:2024-10-31 Online:2024-10-31
  • Contact: CHANG Yingjie (1992-), lecturer, Ph.D. His main research interests cover processing big data, machine learning and multiphase flow. E-mail:yj.chang@chd.edu.cn
  • First author:LIU Yiyan (1981-), associate professor, Ph.D. Her main research interests cover processing big data in power grids and analyzing power quality. E-mail:yyliu1@chd.edu.cn
  • Supported by:
    Key Research and Development Program of Shaanxi Province(2021GY-098)

摘要:

针对光伏电池表面缺陷特征提取困难以及检测的实时性和准确性问题,提出了一种基于DBBR-YOLO的光伏电池表面缺陷检测方法。首先,将多样化分支块(DBB)融入到YOLOv8n中Backbone部分的C2f模块中,引入多样化的特征提取路径,增强特征提取的能力;其次,将模型的Neck部分和Gold-YOLO进行融合,实现对不同层级特征的全局信息聚合和融合,提高了特征图之间的信息交互效率,增强了模型的特征表达能力;最后,引入SimAM注意力机制提高了特征的表达能力,以增强模型对微小缺陷或小目标的检测能力。实验选取5种光伏电池表面缺陷类型进行验证,结果表明:改进后的DBBR-YOLO模型mAP50值达到93.1%,相较于YOLOv8n提升了3.7%,FPS值达到了158.0,该模型在精度和速度方面的性能可以满足实时性、准确性的要求,能够应对光伏电池表面缺陷检测的实际应用场景。

关键词: 光伏电池缺陷, Gold-YOLO, 注意力机制, 深度学习, YOLOv8

Abstract:

A method for detecting surface defects of photovoltaic (PV) cells based on DBBR-YOLO was proposed to address the difficulties in defect feature extraction and the issues of real-time detection and accuracy. Firstly, a diverse branch block (DBB) was incorporated into the C2f module of the YOLOv8n Backbone section to introduce diversified feature extraction paths, enhancing the capability of feature extraction. Secondly, the Neck section of the model was fused with Gold-YOLO to achieve global information aggregation and feature fusion at different hierarchical levels, improving the efficiency of information interaction between feature maps and enhancing the feature expression capability of the model. Finally, the SimAM attention mechanism was introduced to improve the feature expression capability, thereby enhancing the model’s ability to detect small defects or targets. Experiments conducted on five types of PV cell surface defects demonstrated that the improved DBBR-YOLO model achieved an mAP50 value of 93.1%, a 3.7% improvement over YOLOv8n, with an FPS value of 158.0. The performance of the model in terms of accuracy and speed can meet the requirements for real-time detection and accuracy, making it suitable for practical application scenarios of detecting PV cell surface defects.

Key words: photovoltaic cell defects, Gold-YOLO, attention mechanism, deep learning, YOLOv8

中图分类号: