欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (4): 807-817.DOI: 10.11996/JG.j.2095-302X.2025040807

• 计算机图形学与虚拟现实 • 上一篇    下一篇

联合点云先验的神经隐式表面重建加速方法

郭铭策1,2(), 黄琲1, 程乐超3, 王章野1,2()   

  1. 1.浙江大学CAD&CG全国重点实验室,浙江 杭州 310058
    2.江西求是高等研究院,江西 南昌 330038
    3.合肥工业大学计算机与信息学院,安徽 合肥 230009
  • 收稿日期:2024-08-01 修回日期:2025-03-10 出版日期:2025-08-30 发布日期:2025-08-11
  • 通讯作者:王章野(1965-),男,副教授,博士。主要研究方向为计算机图形学、虚拟现实、红外仿真等。E-mail:zywang@cad.zju.edu.cn
  • 第一作者:郭铭策(2001-),男,硕士研究生。主要研究方向为计算机视觉、计算机图形学。E-mail:guomingce@zju.edu.cn
  • 基金资助:
    国家自然科学基金(62106235);浙江省自然科学青年基金(LQ21F020003)

Acceleration method for neural implicit surface reconstruction with joint point cloud priors

GUO Mingce1,2(), HUANG Bei1, CHENG Lechao3, WANG Zhangye1,2()   

  1. 1. State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou Zhejiang 310058, China
    2. Jiangxi Qiushi Advanced Research Institute, Nanchang Jiangxi 330038, China
    3. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei Anhui 230009, China
  • Received:2024-08-01 Revised:2025-03-10 Published:2025-08-30 Online:2025-08-11
  • First author:GUO Mingce (2001-), master student. His main research interests cover computer vision and computer graphics. E-mail:guomingce@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62106235);Zhejiang Provincial Natural Science Youth Fund Project(LQ21F020003)

摘要:

针对当前神经隐式表面重建任务中训练时间开销大的问题,提出了一种联合点云先验指导的采样方法,在保证表面重建质量的同时降低模型训练的时间成本。对神经隐式表面重建网络训练的加速分为3个方面,首先交替使用随机训练像素采样和基于点云投影密度的自适应训练像素采样,加速模型对待重建表面位置的优化;然后通过点云先验与采样像素邻接关系,对训练光线上接近表面的位置进行集中采样,减少重要性采样的数量和时间开销;此外结合稀疏点云先验损失优化符号距离场网络,并以一定迭代步长对点云缓存进行更新。对比实验选取了DTU和Tanks-and-Temples数据集中的10个测试场景,结果表明该方法可有效地减少神经隐式表面重建训练时间开销的同时保证表面重建的质量,与NeuS神经隐式表面重建方法相比,训练时间开销减少35%;在相同训练时间内,本方法预测新视角图像峰值信噪比(PSNR)相较于NeuS方法平均提高了3.1%,结构相似度(SSIM)平均提高了3.4%。

关键词: 表面重建, 神经渲染, 神经隐式表面, 点云, 自适应采样

Abstract:

To address the practical problem that the current neural implicit surface reconstruction tasks cost high training time, a sampling method guided by joint point-cloud priors we proposed, which reduced the model training time cost while ensuring the quality of surface reconstruction. Acceleration for the training of neural implicit surface reconstruction networks was achieved from three aspects: firstly, it alternated between random training pixel sampling and adaptive training pixel sampling based on point-cloud projection density to accelerat the model’s optimization for the locations of the surface to be reconstructed; secondly, by utilizing point-cloud priors and the adjacency relationship of sampled pixels, the propsed approach concentrated sampling on locations near the surface on training rays, thus reducing the number and time cost of importance sampling; in addition, it leveraged sparse point cloud prior loss to optimize the signed distance field network and periodically updated the point cloud cache with a certain iteration step. Comparative experiments conducted on ten test scenes from the DTU and Tanks-and-Temples datasets demonstrated that the proposed method can significantly reduce the training time cost of neural implicit surface reconstruction while preserving the quality of the reconstruction. When compared to the NeuS neural implicit surface reconstruction method, our approach reduced training time costs by 35%; with the same training duration, our approach achieved a 3.1% average increase in peak signal-to-noise ratio (PSNR) and a 3.4% average improvement in structural similarity index (SSIM) for new viewpoint image predictions.

Key words: surface reconstruction, neural rendering, neural implicit surface, point cloud, adaptive sampling

中图分类号: