欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 931-949.DOI: 10.11996/JG.j.2095-302X.2025050931

• 综述 • 上一篇    下一篇

自动驾驶图像合成方法综述:从模拟器到新范式

黄敬1(), 时瑞浩1, 宋文明1, 郭和攀1, 魏璜1, 魏小松3, 姚剑2,3()   

  1. 1广州汽车集团股份有限公司广东 广州511434
    2武汉大学深圳研究院广东 深圳518063
    3武汉大学遥感信息工程学院湖北 武汉430079
  • 收稿日期:2025-01-26 接受日期:2025-04-21 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:姚剑(1975-),男,教授,博士。主要研究方向为计算机视觉、机器视觉、图像处理、模式识别、机器学习、SLAM、机器人等。E-mail:jian.yao@whu.edu.cn
  • 第一作者:黄敬(1978-),男,工程师,硕士。主要研究方向为智能网联汽车的云与大数据。E-mail:huangjing@gacrnd.com
  • 基金资助:
    广东省科技计划项目(2023B1212020010)

A review of autonomous driving image synthesis methods: from simulators to new paradigms

HUANG Jing1(), SHI Ruihao1, SONG Wenming1, GUO Hepan1, WEI Huang1, WEI Xiaosong3, YAO Jian2,3()   

  1. 1Guangzhou Automobile Group Company Limited, Guangzhou Guangdong511434, China
    2Wuhan University Shenzhen Research Institute, Shenzhen Guangdong518063, China
    3School of Remote Sensing and Informaion Engineering, Wuhan University, Wuhan Hubei430079, China
  • Received:2025-01-26 Accepted:2025-04-21 Published:2025-10-30 Online:2025-09-10
  • First author:HUANG Jing (1978-), engineer, master. His main research interests cover cloud and big data of intelligent connected vehicles. E-mail:huangjing@gacrnd.com
  • Supported by:
    Guangdong Provincial Science and Technology Plan Project(2023B1212020010)

摘要:

图像合成技术对自动驾驶的发展至关重要,旨在低成本、高效率地为自动驾驶系统提供训练和测试数据。随着计算机视觉和人工智能(AI)技术的发展,神经辐射场(NeRF)、三维高斯溅射(3DGS)和生成模型在图像合成领域引起了广泛关注,这些新范式在自动驾驶场景构建和图像数据合成中表现出巨大潜力。鉴于这些方法对于自动驾驶技术发展的重要性,回顾了其发展历程并搜集了最新研究工作,从自动驾驶图像合成问题的实际角度重新观察相关方法,介绍了NeRF、3DGS、生成模型以及虚实融合的合成方法在自动驾驶领域的进展,其中尤其关注NeRF和3DGS这2种基于重建的方法。首先,分析了自动驾驶图像生成任务的一些重要问题;然后,从自动驾驶场景面临的有限视角问题、大规模场景问题、动态性问题和加速问题4个方面详细分析了NeRF和3DGS的代表性方案;考虑到生成模型对于创建自动驾驶极端场景(corner case)的潜在优势,还介绍了自动驾驶世界模型用于场景生成的实际问题及现有研究工作;接着,分析了当前业内虚实融合自动驾驶图像合成前沿应用,以及NeRF和3DGS结合AI生成模型在自动驾驶场景生成任务中的潜力;最后,总结了当前取得的成功及未来亟需探索的方向。

关键词: 自动驾驶, 图像合成, 神经辐射场, 三维高斯溅射, 生成模型

Abstract:

Image synthesis techniques are crucial for the development of autonomous driving, aiming to provide training and testing data for autonomous driving systems in a cost-effective manner. With the development of computer vision and artificial intelligence (AI) technologies, neural radiance fields (NeRF), 3D Gaussian splatting (3DGS), and generative modeling have attracted much attention in the field of image synthesis. These new paradigms show great potential in autonomous driving scene construction and image data synthesis. Recognizing the importance of these methods for the development of autonomous driving technology, their development history was reviewed and the latest research works were collected, and the methods were re-examined from the practical perspective of the autonomous driving image synthesis problem. The progress of NeRF, 3DGS, generative modeling, and reality-virtual fusion synthesis methods in the field of autonomous driving was introduced, with special focus on NeRF and 3DGS, two reconstruction-based methods. First, some important issues were analyzed for the task of autonomous driving image generation, followed by detailed examination of representative schemes of NeRF and 3DGS in terms of the limited viewpoint problem, large-scale scene problem, dynamics problem, and acceleration problem faced by autonomous driving scenes. Considering the potential benefits of generative models for creating corner cases of autonomous driving, practical issues and existing research works on the use of autonomous driving world models for scenario generation were also presented. Then, the cutting-edge applications of virtual-reality fusion for autonomous driving image synthesis were analyzed, as well as the potential of NeRF and 3DGS combined with AI generative modeling for the task of autonomous driving scenario generation. Finally, current achievements were summarized and future research directions were outlined.

Key words: autonomous driving, image synthesis, neural radiance field, 3D gaussian splatting, generation model

中图分类号: