欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 998-1009.DOI: 10.11996/JG.j.2095-302X.2025050998

• 图像处理与计算机视觉 • 上一篇    下一篇

基于均值漂移与深度学习融合的小语义点云语义分割

朱泓淼1,2(), 钟国杰1,2, 张严辞1,2()   

  1. 1 四川大学计算机学院四川 成都 610064
    2 四川大学视觉合成图形图像技术国家级重点实验室四川 成都 610064
  • 收稿日期:2024-10-21 接受日期:2025-02-12 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:张严辞(1975-),男,教授,博士。主要研究方向为计算机图形学、虚拟/增强现实、3D游戏等。E-mail:yczhang@scu.edu.cn
  • 第一作者:朱泓淼(2000-),女,硕士研究生。主要研究方向为计算机图形学。E-mail:zhm001207@163.com

Semantic segmentation of small-scale point clouds based on integration of mean shift and deep learning

ZHU Hongmiao1,2(), ZHONG Guojie1,2, ZHANG Yanci1,2()   

  1. 1 College of Computer Science, Sichuan University, Chengdu Sichuan 610064, China
    2 National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu Sichuan 610064, China
  • Received:2024-10-21 Accepted:2025-02-12 Published:2025-10-30 Online:2025-09-10
  • First author:ZHU Hongmiao (2000-), master student. Her main research interest covers computer graphics. E-mail:zhm001207@163.com

摘要:

在点云语义分割领域,准确分割小语义对象一直是一个重要且具有挑战性的问题。点云数据通常具有稀疏性和不规则性,尤其是在面对小物体或远距离物体时,现有的全监督点云分割算法往往无法有效地捕捉这些小语义对象的特征,导致分割精度较低。这种问题在自动驾驶、机器人导航和城市建模等应用中尤为突出,因为这些任务通常依赖于对小物体的准确识别与定位。为解决此问题,提出了一种基于均值漂移与深度学习融合的小语义点云分割算法。分析了现有点云分割算法在处理小语义对象时的不足,重点阐述了由于小物体的稀疏性和局部特征弱,现有方法往往未能有效提取其语义信息。为此,将均值漂移引入深度神经网络中,作为一种特征提取模块,以提高对小语义对象的关注度。在网络架构设计上,还特别设计了特征处理模块和小语义对象邻域捕获模块。特征处理模块有效地增强了小物体的局部特征,帮助网络在复杂背景中更好地区分小物体与大物体;而小语义对象邻域捕获模块则进一步聚焦于小物体周围的上下文信息,使得模型能够在局部区域内捕捉到更精确的语义特征。通过在多个点云数据集上的实验评估表明,在分割小语义对象上,尤其在稀疏、小物体密集场景下,改进后的方法有效地提高了分割精度。综上所述,基于均值漂移与深度学习融合的小语义点云分割算法为小语义对象的准确分割提供了一种有效的解决方案,具有广泛的应用前景和实际意义。

关键词: 点云处理, 语义分割, 均值漂移, 深度学习, 小语义对象特征

Abstract:

In the field of point cloud semantic segmentation, accurate segmentation of small semantic objects has always been an important and challenging task. Point cloud data is typically sparse and irregular, and when small or distant objects are processed, existing fully-supervised point cloud segmentation algorithms often fail to effectively capture the features of these small semantic objects, leading to lower segmentation accuracy. This issue is particularly prominent in applications such as autonomous driving, robot navigation, and urban modeling, given their reliance on the accurate identification and localization of small objects. To address this problem, a small semantic point cloud segmentation algorithm integrating mean shift clustering with deep learning was proposed. The shortcomings of existing point cloud segmentation algorithms in handling small semantic objects were analyzed, emphasizing that due to the sparsity and weak local features of small objects, current methods are often unable to effectively extract their semantic information. To overcome this, mean shift was integrated into deep neural networks as a feature extraction module to enhance the model’s attention to small semantic objects. In terms of network architecture, a feature processing module and a small semantic object neighborhood capture module were also specifically designed. The feature processing module effectively enhanced the local features of small objects, facilitating the network to better distinguish small from large objects in complex backgrounds. Meanwhile, the small semantic object neighborhood capture module focused on the contextual information surrounding small objects, enabling the model to capture more precise semantic features in local regions. Through experimental evaluation on multiple point cloud datasets, the results demonstrated that the proposed method significantly improved segmentation accuracy, especially in sparse and small-object-dense scenarios. In conclusion, the small semantic point cloud segmentation algorithm based on the integration of mean shift and deep learning provided an effective solution for accurate segmentation of small semantic objects, with broad application prospects and practical significance.

Key words: point cloud processing, semantic segmentation, mean shift, deep learning, small semantic object features

中图分类号: