图学学报 ›› 2025, Vol. 46 ›› Issue (5): 998-1009.DOI: 10.11996/JG.j.2095-302X.2025050998
收稿日期:
2024-10-21
接受日期:
2025-02-12
出版日期:
2025-10-30
发布日期:
2025-09-10
通讯作者:
张严辞(1975-),男,教授,博士。主要研究方向为计算机图形学、虚拟/增强现实、3D游戏等。E-mail:yczhang@scu.edu.cn第一作者:
朱泓淼(2000-),女,硕士研究生。主要研究方向为计算机图形学。E-mail:zhm001207@163.com
ZHU Hongmiao1,2(), ZHONG Guojie1,2, ZHANG Yanci1,2(
)
Received:
2024-10-21
Accepted:
2025-02-12
Published:
2025-10-30
Online:
2025-09-10
First author:
ZHU Hongmiao (2000-), master student. Her main research interest covers computer graphics. E-mail:zhm001207@163.com
摘要:
在点云语义分割领域,准确分割小语义对象一直是一个重要且具有挑战性的问题。点云数据通常具有稀疏性和不规则性,尤其是在面对小物体或远距离物体时,现有的全监督点云分割算法往往无法有效地捕捉这些小语义对象的特征,导致分割精度较低。这种问题在自动驾驶、机器人导航和城市建模等应用中尤为突出,因为这些任务通常依赖于对小物体的准确识别与定位。为解决此问题,提出了一种基于均值漂移与深度学习融合的小语义点云分割算法。分析了现有点云分割算法在处理小语义对象时的不足,重点阐述了由于小物体的稀疏性和局部特征弱,现有方法往往未能有效提取其语义信息。为此,将均值漂移引入深度神经网络中,作为一种特征提取模块,以提高对小语义对象的关注度。在网络架构设计上,还特别设计了特征处理模块和小语义对象邻域捕获模块。特征处理模块有效地增强了小物体的局部特征,帮助网络在复杂背景中更好地区分小物体与大物体;而小语义对象邻域捕获模块则进一步聚焦于小物体周围的上下文信息,使得模型能够在局部区域内捕捉到更精确的语义特征。通过在多个点云数据集上的实验评估表明,在分割小语义对象上,尤其在稀疏、小物体密集场景下,改进后的方法有效地提高了分割精度。综上所述,基于均值漂移与深度学习融合的小语义点云分割算法为小语义对象的准确分割提供了一种有效的解决方案,具有广泛的应用前景和实际意义。
中图分类号:
朱泓淼, 钟国杰, 张严辞. 基于均值漂移与深度学习融合的小语义点云语义分割[J]. 图学学报, 2025, 46(5): 998-1009.
ZHU Hongmiao, ZHONG Guojie, ZHANG Yanci. Semantic segmentation of small-scale point clouds based on integration of mean shift and deep learning[J]. Journal of Graphics, 2025, 46(5): 998-1009.
图1 复杂点云场景((a) 建筑墙上的空调外机;(b) 礼堂上的讲台;(c) 停车场中的汽车)
Fig. 1 Complex point cloud scene ((a) Air conditioning outdoor unit on the building wall; (b) The podium in the auditorium; (c) Cars in the parking lot)
图6 带宽的设置问题((a) 带宽设置过大;(b) 带宽设置过小)
Fig. 6 Issues with bandwidth configuration ((a) The bandwidth setting is too large; (b) The bandwidth setting is too small)
图10 中心点过少或者数据结构复杂((a) 案例1:中心点过少;(b) 案例2:数据结构复杂)
Fig. 10 Insufficient centroids or complex data structures ((a) Case 1: Too few center points; (b) Case 2: Complex data structure)
软硬件 | 实验环境 |
---|---|
CPU | 12th Gen Intel(R) Core(TM) i5-12600KF 3.70 GHz |
内存 | 16 GB |
显卡 | NVIDIA GeForce RTX 3070 |
操作系统 | Windows 11 |
编译器 | Visual Studio Code |
开发库 | Python,C++,CUDA,Pytroch, Tensorflow,Numpy |
表1 实验软硬件环境
Table 1 Experimental software and hardware environment
软硬件 | 实验环境 |
---|---|
CPU | 12th Gen Intel(R) Core(TM) i5-12600KF 3.70 GHz |
内存 | 16 GB |
显卡 | NVIDIA GeForce RTX 3070 |
操作系统 | Windows 11 |
编译器 | Visual Studio Code |
开发库 | Python,C++,CUDA,Pytroch, Tensorflow,Numpy |
算法 | 数据集 | 训练 周期 | 批量 大小 | 样本 数量 |
---|---|---|---|---|
PointNet++[ | S3DIS | 32 | 10 | 4 096 |
PointNet[ | SCU | 20 | 4 | 1 024 |
K-means+PointNet[ | SCU | 20 | 4 | 1 024 |
DBSCAN[ | SCU | 20 | 4 | 1 024 |
EM[ | SCU | 20 | 4 | 1 024 |
Ours+PointNet++[ | S3DIS | 32 | 10 | 4 096 |
Ours+PointNet[ | SCU | 20 | 4 | 1 024 |
表2 训练设置
Table 2 Training configuration
算法 | 数据集 | 训练 周期 | 批量 大小 | 样本 数量 |
---|---|---|---|---|
PointNet++[ | S3DIS | 32 | 10 | 4 096 |
PointNet[ | SCU | 20 | 4 | 1 024 |
K-means+PointNet[ | SCU | 20 | 4 | 1 024 |
DBSCAN[ | SCU | 20 | 4 | 1 024 |
EM[ | SCU | 20 | 4 | 1 024 |
Ours+PointNet++[ | S3DIS | 32 | 10 | 4 096 |
Ours+PointNet[ | SCU | 20 | 4 | 1 024 |
图11 本算法在S3DIS数据集语义分割预测结果((a) 输入场景;(b) 真实数据;(c) 本文算法)
Fig. 11 Semantic segmentation prediction results of the algorithm in the S3DIS dataset ((a) Input scene; (b) Ground truth; (c) Ours)
算法 | mIoU | Table (5.5) | Chair (2.9) | Sofa (1.7) | Ceiling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (69.5) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KPConv rigid[ | 65.4 | 80.2 | 90.1 | 66.4 | 92.6 | 97.3 | 81.4 | 0.0 | 16.5 | 54.5 | 69.5 | 74.6 | 63.7 | 58.1 |
RandLA[ | 63.0 | 77.2 | 85.2 | 71.5 | 92.4 | 96.7 | 80.6 | 0.0 | 18.3 | 61.3 | 43.3 | 71.0 | 69.2 | 52.3 |
PointCNN[ | 57.3 | 74.4 | 80.6 | 31.7 | 92.3 | 62.1 | 79.4 | 0.0 | 17.6 | 22.8 | 62.1 | 66.7 | 62.1 | 56.7 |
SCF-Net[ | 63.3 | 72.2 | 81.1 | 62.1 | 93.2 | 95.4 | 78.1 | 0.0 | 43.8 | 51.2 | 60.4 | 70.7 | 65.8 | 56.4 |
SPH3D[ | 59.5 | 79.9 | 86.9 | 33.2 | 93.3 | 97.1 | 81.1 | 0.0 | 33.2 | 45.8 | 43.8 | 71.5 | 54.1 | 53.7 |
Ours | 63.7 | 84.9 | 90.4 | 74.3 | 93.7 | 96.7 | 78.3 | 0.0 | 21.8 | 54.7 | 64.8 | 61.1 | 54.7 | 52.8 |
表3 各类算法在S3DIS数据集中Area_5的分割结果/%
Table 3 Results of various algorithms on Area_5 of the S3DIS dataset/%
算法 | mIoU | Table (5.5) | Chair (2.9) | Sofa (1.7) | Ceiling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (69.5) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KPConv rigid[ | 65.4 | 80.2 | 90.1 | 66.4 | 92.6 | 97.3 | 81.4 | 0.0 | 16.5 | 54.5 | 69.5 | 74.6 | 63.7 | 58.1 |
RandLA[ | 63.0 | 77.2 | 85.2 | 71.5 | 92.4 | 96.7 | 80.6 | 0.0 | 18.3 | 61.3 | 43.3 | 71.0 | 69.2 | 52.3 |
PointCNN[ | 57.3 | 74.4 | 80.6 | 31.7 | 92.3 | 62.1 | 79.4 | 0.0 | 17.6 | 22.8 | 62.1 | 66.7 | 62.1 | 56.7 |
SCF-Net[ | 63.3 | 72.2 | 81.1 | 62.1 | 93.2 | 95.4 | 78.1 | 0.0 | 43.8 | 51.2 | 60.4 | 70.7 | 65.8 | 56.4 |
SPH3D[ | 59.5 | 79.9 | 86.9 | 33.2 | 93.3 | 97.1 | 81.1 | 0.0 | 33.2 | 45.8 | 43.8 | 71.5 | 54.1 | 53.7 |
Ours | 63.7 | 84.9 | 90.4 | 74.3 | 93.7 | 96.7 | 78.3 | 0.0 | 21.8 | 54.7 | 64.8 | 61.1 | 54.7 | 52.8 |
场景 | 算法 | mIoU | Car (0.9) | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) |
---|---|---|---|---|---|---|---|
Scene 1 | DBSCAN + PointNet | 60.7 | 0.9 | 73.8 | 77.8 | 75.5 | 75.5 |
K-Means + PointNet | 58.4 | 1.1 | 60.0 | 84.2 | 74.1 | 72.5 | |
EM + PointNet | 63.5 | 14.4 | 63.4 | 83.0 | 78.0 | 78.9 | |
Ours(MS + PointNet) | 68.7 | 27.4 | 75.3 | 83.1 | 79.4 | 78.2 | |
Scene 2 | DBSCAN + PointNet | 67.0 | 23.3 | 61.9 | 90.3 | 92.7 | |
K-Means + PointNet | 70.0 | 28.0 | 70.8 | 89.5 | 91.2 | ||
EM + PointNet | 69.9 | 26.3 | 69.5 | 86.7 | 89.2 | ||
Ours(MS + PointNet) | 72.9 | 34.5 | 70.4 | 92.7 | 94.0 | ||
Scene 3 | DBSCAN + PointNet | 59.9 | 22.7 | 79.6 | 46.5 | 90.9 | |
K-Means + PointNet | 59.5 | 16.8 | 76.9 | 54.1 | 90.0 | ||
EM + PointNet | 57.6 | 14.6 | 80.7 | 47.0 | 88.0 | ||
Ours(MS + PointNet) | 65.3 | 28.3 | 84.3 | 57.0 | 91.6 |
表4 测试结果/%
Table 4 Test results/%
场景 | 算法 | mIoU | Car (0.9) | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) |
---|---|---|---|---|---|---|---|
Scene 1 | DBSCAN + PointNet | 60.7 | 0.9 | 73.8 | 77.8 | 75.5 | 75.5 |
K-Means + PointNet | 58.4 | 1.1 | 60.0 | 84.2 | 74.1 | 72.5 | |
EM + PointNet | 63.5 | 14.4 | 63.4 | 83.0 | 78.0 | 78.9 | |
Ours(MS + PointNet) | 68.7 | 27.4 | 75.3 | 83.1 | 79.4 | 78.2 | |
Scene 2 | DBSCAN + PointNet | 67.0 | 23.3 | 61.9 | 90.3 | 92.7 | |
K-Means + PointNet | 70.0 | 28.0 | 70.8 | 89.5 | 91.2 | ||
EM + PointNet | 69.9 | 26.3 | 69.5 | 86.7 | 89.2 | ||
Ours(MS + PointNet) | 72.9 | 34.5 | 70.4 | 92.7 | 94.0 | ||
Scene 3 | DBSCAN + PointNet | 59.9 | 22.7 | 79.6 | 46.5 | 90.9 | |
K-Means + PointNet | 59.5 | 16.8 | 76.9 | 54.1 | 90.0 | ||
EM + PointNet | 57.6 | 14.6 | 80.7 | 47.0 | 88.0 | ||
Ours(MS + PointNet) | 65.3 | 28.3 | 84.3 | 57.0 | 91.6 |
方法 | 场景 | OA | mIoU/% | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|
PointNet | Scene 1 | 79.8 | 60.1 | 68.4 | 72.2 | 73.3 | 71.9 | 14.9 |
Scene 2 | 81.5 | 65.6 | 61.5 | 87.1 | 92.0 | 21.9 | ||
Scene 3 | 86.3 | 50.6 | 80.1 | 22.4 | 85.4 | 14.5 | ||
Ours | Scene 1 | 89.4 | 68.7 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
Scene 2 | 87.6 | 72.9 | 70.4 | 92.7 | 94.0 | 34.5 | ||
Scene 3 | 91.4 | 65.3 | 84.3 | 57.0 | 91.6 | 28.3 |
表5 PointNet在本文算法嵌入前后对SCU数据集的分割结果/%
Table 5 Results of PointNet embedded and unembedded modules on SCU dataset/%
方法 | 场景 | OA | mIoU/% | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|
PointNet | Scene 1 | 79.8 | 60.1 | 68.4 | 72.2 | 73.3 | 71.9 | 14.9 |
Scene 2 | 81.5 | 65.6 | 61.5 | 87.1 | 92.0 | 21.9 | ||
Scene 3 | 86.3 | 50.6 | 80.1 | 22.4 | 85.4 | 14.5 | ||
Ours | Scene 1 | 89.4 | 68.7 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
Scene 2 | 87.6 | 72.9 | 70.4 | 92.7 | 94.0 | 34.5 | ||
Scene 3 | 91.4 | 65.3 | 84.3 | 57.0 | 91.6 | 28.3 |
方法 | Room | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet++ | Conference 1 | 62.2 | 92.4 | 95.3 | 81.4 | 3.5 | 64.5 | 1.2 | 75.2 | 84.1 | 66.3 | 57.8 | |||
Conference 2 | 54.0 | 91.0 | 97.1 | 74.6 | 1.3 | 11.1 | 46.2 | 73.2 | 71.5 | 84.7 | 1.4 | 41.5 | |||
Conference 3 | 60.8 | 95.3 | 97.9 | 71.4 | 15.6 | 71.2 | 0.4 | 77.4 | 63.6 | 62.1 | 52.7 | ||||
Ours | Conference 1 | 63.6 | 93.6 | 96.8 | 87.1 | 1.6 | 69.8 | 2.4 | 76.3 | 86.4 | 67.1 | 54.9 | |||
Conference 2 | 60.0 | 94.2 | 97.1 | 83.6 | 0.4 | 9.7 | 68.2 | 74.6 | 83.1 | 81.4 | 15.4 | 52.5 | |||
Conference 3 | 71.1 | 97.7 | 96.1 | 84.6 | 27.9 | 64.3 | 76.8 | 79.4 | 67.2 | 56.3 | 61.1 |
表6 PointNet++与嵌入本文算法模块处理Area_5 Conference Room的结果/%
Table 6 Results of PointNet++ embedded and unembedded modules on Area 5 Conference Room/%
方法 | Room | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet++ | Conference 1 | 62.2 | 92.4 | 95.3 | 81.4 | 3.5 | 64.5 | 1.2 | 75.2 | 84.1 | 66.3 | 57.8 | |||
Conference 2 | 54.0 | 91.0 | 97.1 | 74.6 | 1.3 | 11.1 | 46.2 | 73.2 | 71.5 | 84.7 | 1.4 | 41.5 | |||
Conference 3 | 60.8 | 95.3 | 97.9 | 71.4 | 15.6 | 71.2 | 0.4 | 77.4 | 63.6 | 62.1 | 52.7 | ||||
Ours | Conference 1 | 63.6 | 93.6 | 96.8 | 87.1 | 1.6 | 69.8 | 2.4 | 76.3 | 86.4 | 67.1 | 54.9 | |||
Conference 2 | 60.0 | 94.2 | 97.1 | 83.6 | 0.4 | 9.7 | 68.2 | 74.6 | 83.1 | 81.4 | 15.4 | 52.5 | |||
Conference 3 | 71.1 | 97.7 | 96.1 | 84.6 | 27.9 | 64.3 | 76.8 | 79.4 | 67.2 | 56.3 | 61.1 |
方法 | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Point Transformer[ | 70.4 | 94.0 | 98.5 | 86.3 | 38.0 | 63.4 | 74.3 | 89.1 | 82.4 | 74.3 | 80.2 | 76.0 | 59.3 | |
Ours | 71.7 | 95.2 | 98.1 | 88.4 | 41.6 | 62.8 | 74.4 | 90.4 | 86.3 | 74.5 | 80.0 | 79.2 | 61.6 |
表7 Point Transformer与嵌入本文算法模块处理Area_5 Conference Room的结果/%
Table 7 Results of Point Transformer embedded and unembedded modules on Area 5 Conference Room/%
方法 | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Point Transformer[ | 70.4 | 94.0 | 98.5 | 86.3 | 38.0 | 63.4 | 74.3 | 89.1 | 82.4 | 74.3 | 80.2 | 76.0 | 59.3 | |
Ours | 71.7 | 95.2 | 98.1 | 88.4 | 41.6 | 62.8 | 74.4 | 90.4 | 86.3 | 74.5 | 80.0 | 79.2 | 61.6 |
实验 | B | NC | MSF | NNF | mIoU | OA | SOOA | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp 1 | × | | | | 66.8 | 85.4 | 53.1 | 74.3 | 81.2 | 77.6 | 75.7 | 25.4 |
Exp 2 | | × | | | 61.9 | 80.4 | 44.7 | 72.5 | 75.4 | 75.8 | 71.4 | 14.3 |
Exp 3 | | | × | | 62.7 | 82.9 | 47.4 | 74.2 | 72.4 | 77.2 | 74.3 | 15.5 |
Exp 4 | | | | × | 63.9 | 83.7 | 49.3 | 74.2 | 74.2 | 78.5 | 76.3 | 16.1 |
Exp 5 | | | | | 68.7 | 89.4 | 56.3 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
表8 各模块消融实验结果表/%
Table 8 Results table of module ablation experiments/%
实验 | B | NC | MSF | NNF | mIoU | OA | SOOA | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp 1 | × | | | | 66.8 | 85.4 | 53.1 | 74.3 | 81.2 | 77.6 | 75.7 | 25.4 |
Exp 2 | | × | | | 61.9 | 80.4 | 44.7 | 72.5 | 75.4 | 75.8 | 71.4 | 14.3 |
Exp 3 | | | × | | 62.7 | 82.9 | 47.4 | 74.2 | 72.4 | 77.2 | 74.3 | 15.5 |
Exp 4 | | | | × | 63.9 | 83.7 | 49.3 | 74.2 | 74.2 | 78.5 | 76.3 | 16.1 |
Exp 5 | | | | | 68.7 | 89.4 | 56.3 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
[1] | HUANG W, LIANG H, LIN L, et al. A fast point cloud ground segmentation approach based on coarse-to-fine Markov random field[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7841-7854. |
[2] | 张玥焜, 余文杰, 赵习之, 等. 基于机载激光雷达点云的交互式树木分割与建模方法研究[J]. 图学学报, 2021, 42(4): 599-607. |
ZHANG Y K, YU W J, ZHAO X Z, et al. Interactive tree segmentation and modeling from ALS point clouds[J]. Journal of Graphics, 2021, 42(4): 599-607 (in Chinese).
DOI |
|
[3] |
牛辰庚, 刘玉杰, 李宗民, 等. 基于点云数据的三维目标识别和模型分割方法[J]. 图学学报, 2019, 40(2): 274-281.
DOI |
NIU C Y, LIU Y J, LI Z M, et al. 3D object recognition and model segmentation based on point cloud data[J]. Journal of Graphics, 2019, 40(2): 274-281 (in Chinese). | |
[4] | ZHU X G, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 9939-9948. |
[5] | YAN X, GAO J T, LI J, et al. Sparse single sweep LiDAR point cloud segmentation via learning contextual shape priors from scene completion[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3101-3109. |
[6] | XU C F, WU B C, WANG Z N, et al. SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 1-19. |
[7] | CHARLES R Q, SU H, KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[8] | CHARLES R Q, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2024-04-20]. http://arxiv.org/pdf/1706.02413. |
[9] | THOMAS H, CHARLES R Q, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6410-6419. |
[10] | TANG H T, LIU Z J, ZHAO S Y, et al. Searching efficient 3D architectures with sparse point-voxel convolution[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 685-702. |
[11] |
TAO A, DUAN Y Q, WEI Y, et al. SegGroup: seg-level supervision for 3D instance and semantic segmentation[J]. IEEE Transactions on Image Processing, 2022, 31: 4952-4965.
DOI PMID |
[12] | GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018. |
[13] | FENG, M T, LIANG Z, LIN X F, et al.. Point attention network for semantic segmentation of 3D point clouds[J]. Pattern Recognit. 2020, 107: 107446. |
[14] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-04-20]. https://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#KipfW17. |
[15] | ZOU Y, YU Z D, VIJAYA KUMAR B V K, et al. Domain adaptation for semantic segmentation via class-balanced self-training[EB/OL]. [2024-04-20]. http://arxiv.org/abs/1810.07911?context=cs.LG. |
[16] | HOU H Y, SHEN M Y, HSU C C, et al. Ensemble fusion for small object detection[C]// The 18th International Conference on Machine Vision and Applications. New York: IEEE Press, 2023: 1-6. |
[17] | XIE Y X, TIAN J J, ZHU X X. Linking points with labels in 3D: a review of point cloud semantic segmentation[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59. |
[18] | HU Q Y, YANG B, XIE L H, et al. RandLA-net: efficient semantic segmentation of large-scale point clouds[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11108-11117. |
[19] | WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 10296-10305. |
[20] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics (TOG), 2019, 38(5): 146. |
[21] | LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on X-transformed points[C]// The 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 828-838. |
[22] | FAN S Q, DONG Q L, ZHU F H, et al. SCF-net: learning spatial contextual features for large-scale point cloud segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14499-14508. |
[23] | LEI H, AKHTAR N, MIAN A. Spherical kernel for efficient graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3664-3680. |
[24] | ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2921-2929. |
[25] | ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 16239-16248. |
[26] | WU X Y, LAO Y X, JIANG L, et al. Point transformer V2:grouped vector attention and partition-based pooling[EB/OL]. [2024-04-17]. https://doi.org/10.48550/arXiv.2210.05666. |
[27] | WU X Y, JIANG L, WANG P S, et al. Point transformer V3: simpler, faster, stronger[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 4840-4851. |
[28] | BI Y X, LIU P, SHI J L, et al. A multi-modal fusion 3D semantic segmentation method[C]// 2023 3rd International Conference on Electronic Information Engineering and Computer Science. New York: IEEE Press, 2023: 542-545. |
[29] | CARDACE A, CONTI A, RAMIREZ P Z, et al. Boosting multi-modal unsupervised domain adaptation for LiDAR semantic segmentation by self-supervised depth completion[J]. IEEE Access, 2023, 11: 85155-85164. |
[30] | DU S Q, WANG W X, GUO R Z, et al. AsymFormer: asymmetrical cross-modal representation learning for mobile platform real-time RGB-D semantic segmentation[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2024: 7608-7615. |
[31] |
XU R, WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678.
PMID |
[32] | STAUFFER C, GRIMSION W E L. Adaptive background mixture models for real-time tracking[C]// 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 1999: 246-252. |
[33] | LLOYD S. Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28(2): 129-137. |
[34] | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// The 2nd International Conference on Knowledge Discovery and Data Mining. Palo Alto: AAAI Press, 1996: 226-231. |
[35] | COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2000: 142-149. |
[36] | MELZER T. Non-parametric segmentation of ALS point clouds using mean shift[J]. Journal of Applied Geodesy, 2007, 1(3): 159-170. |
[37] | ZHANG Z X, ZHANG L Q, TONG X H, et al. A multilevel point-cluster-based discriminative feature for ALS point cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3309-3321. |
[38] | YUE W L, LU J G, ZHOU W H, et al. A new plane segmentation method of point cloud based on mean shift and RANSAC[C]// 2018 Chinese Control and Decision Conference. New York: IEEE Press, 2018: 1658-1663. |
[39] | ZHANG Z X, ZHANG L Q, TONG X H, et al. Discriminative- dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7309-7322. |
[40] | CHEN C, LI G B, XU R J, et al. ClusterNet: deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4994-5002. |
[41] | SALGADO-UGARTE I H, PÉREZ-HERNÁNDEZ M A. Exploring the use of variable bandwidth kernel density estimators[J]. The Stata Journal, 2003, 3(2): 133-147. |
[42] | SILVERMAN B W. Density estimation for statistics and data analysis[M]. New York: Routledge, 1998: 95-119. |
[43] | WU D Y, DING Y, ZHANG M F, et al. Multi-features refinement and aggregation for medical brain segmentation[J]. IEEE Access, 2020, 8: 57483-57496. |
[44] | ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 27-30. |
[45] | COMANICIU D, MEER P. Mean shift analysis and applications[C]// The 7th IEEE International Conference on Computer Vision. New York: IEEE Press, 1999: 1197-1203. |
[1] | 陈东, 李昌隆, 杜振龙, 宋爽, 李晓丽. 光影智绘:基于SAM的视频阴影鲁棒抽取[J]. 图学学报, 2025, 46(4): 739-745. |
[2] | 汪子宇, 曹维维, 曹玉柱, 刘猛, 陈俊, 刘兆邦, 郑健. 基于类内区域动态解耦的半监督肺气管分割[J]. 图学学报, 2025, 46(4): 763-774. |
[3] | 王道累, 丁子健, 杨君, 郑劭恺, 朱瑞, 赵文彬. 基于体素网格特征的NeRF大场景重建方法[J]. 图学学报, 2025, 46(3): 502-509. |
[4] | 孙浩, 谢滔, 何龙, 郭文忠, 虞永方, 吴其军, 王建伟, 东辉. 多模态文本视觉大模型机器人地形感知算法研究[J]. 图学学报, 2025, 46(3): 558-567. |
[5] | 崔丽莎, 宋志文, 姜晓恒, 马鑫, 陈恩庆, 徐明亮. 基于边界和语义感知的表面缺陷分割网络[J]. 图学学报, 2025, 46(3): 578-587. |
[6] | 李治寰, 宁小娟, 吕志勇, 石争浩, 金海燕, 王映辉, 周文明. DEMF-Net:基于双分支增强和多尺度融合的大规模点云语义分割[J]. 图学学报, 2025, 46(2): 259-269. |
[7] | 翟永杰, 王璐瑶, 赵晓瑜, 胡哲东, 王乾铭, 王亚茹. 基于级联查询-位置关系的输电线路多金具检测方法[J]. 图学学报, 2025, 46(2): 288-299. |
[8] | 潘树焱, 刘立群. MSFAFuse:基于多尺度特征信息与注意力机制的SAR和可见光图像融合模型[J]. 图学学报, 2025, 46(2): 300-311. |
[9] | 刘高屹, 胡瑞珍, 刘利刚. 基于2D特征蒸馏的3D高斯泼溅语义分割与编辑[J]. 图学学报, 2025, 46(2): 312-321. |
[10] | 张天圣, 朱闽峰, 任怡雯, 王琛涵, 张立冬, 张玮, 陈为. BPA-SAM:面向工笔画数据的SAM边界框提示增强方法[J]. 图学学报, 2025, 46(2): 322-331. |
[11] | 孙禾衣, 李艺潇, 田希, 张松海. 结合程序内容生成与扩散模型的图像到三维瓷瓶生成技术[J]. 图学学报, 2025, 46(2): 332-344. |
[12] | 陈瑞启, 刘晓飞, 万峰, 侯鹏, 沈金屹. 数字孪生驱动的卫星太阳翼展开测试仿真与预测方法[J]. 图学学报, 2025, 46(2): 449-458. |
[13] | 汪颜, 张牧雨, 刘秀珍. 基于深度学习的电影海报视觉互动意义评价方法[J]. 图学学报, 2025, 46(1): 221-232. |
[14] | 李琼, 考月英, 张莹, 徐沛. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
[15] | 刘灿锋, 孙浩, 东辉. 结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究[J]. 图学学报, 2024, 45(6): 1256-1265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||