图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1172-1182.DOI: 10.11996/JG.j.2095-302X.2025061172
收稿日期:2025-07-31
接受日期:2025-11-05
出版日期:2025-12-30
发布日期:2025-12-27
通讯作者:马宁(1979-),女,工程师,本科。主要研究方向为数据挖掘和先进制造。E-mail:41132413@qq.com第一作者:唐军(1984-),男,高级工程师,博士。主要研究方向为数据挖掘和先进制造。E-mail:juntang2013@163.com
TANG Jun(
), ZHU Shihua, YI Bin, LIU Chunbo, WANG Mingyue, MA Ning(
)
Received:2025-07-31
Accepted:2025-11-05
Published:2025-12-30
Online:2025-12-27
First author:TANG Jun (1984-), senior engineer, Ph.D. His main research interests cover data mining and advanced manufacturing. E-mail:juntang2013@163.com
摘要:
在流程制造这类连续化生产场景中,产品均质化直接决定了用户体验的稳定性与满意度,其核心价值不仅体现在产品性能一致性上,更对生产效率提升与成本控制具有重要意义。然而,流程制造过程中各类工艺参数相互耦合,关联关系复杂,导致现有模型预测延迟高、精度较低。基于上述问题,提出了基于灰色关联分析(GRA)和Transformer-MC-CF的流程制造工艺质量指标多阶段、多步预测模型:首先,针对流程制造的多变量参数冗余问题,使用灰色关联分析量化各工序输入参数与质量指标的关联强度,筛选关键影响参数,剔除低关联度冗余变量,既降低模型计算复杂度,又避免无关信息干扰特征学习。然后,构建基于Transformer的多阶段、多步预测模型,针对多因素相互耦合导致的局部特征融合不足问题,设计了多通道感受野模块(MC-RFB),通过多尺度卷积与膨胀卷积的组合,兼顾局部细节特征与长时序依赖关系的捕捉;面向流程制造的工序连贯性特点,提出了关联特征融合(CF)模块,采用自适应加权策略融合上下游工序的隐特征,有效挖掘跨工序间接影响关系。实验结果表明,采用GRA方法有效提升了模型的预测效果。与其他传统模型相比,提出的Transformer-MC-CF模型在流程制造质量预测场景中相比其他模型领先超过4.6%,多工序、多步预测的平均拟合度达到了97.5%,为有效提升流程制造质量指标预测和调控能力,实现均质化生产提供了技术支撑。
中图分类号:
唐军, 朱世华, 易斌, 刘春波, 王明悦, 马宁. 基于多通道融合GRA-Transformer的多工序工艺质量预测模型[J]. 图学学报, 2025, 46(6): 1172-1182.
TANG Jun, ZHU Shihua, YI Bin, LIU Chunbo, WANG Mingyue, MA Ning. Multi-channel fusion GRA-Transformer based multi-stage prediction model for multi-process quality indicators prediction[J]. Journal of Graphics, 2025, 46(6): 1172-1182.
| 预测步数 | 模型 | 平均MSE | 平均R2 |
|---|---|---|---|
| 1 | Transformer | 1.148 | 0.919 |
| Transformer-MCRFB | 0.991 | 0.927 | |
| Transformer-MC-CF | 0.717 | 0.947 | |
| 2 | Transformer | 1.901 | 0.863 |
| Transformer- MCRFB | 0.450 | 0.968 | |
| Transformer-MC-CF | 0.163 | 0.989 | |
| 3 | Transformer | 2.143 | 0.853 |
| Transformer- MCRFB | 1.245 | 0.908 | |
| Transformer-MC-CF | 0.853 | 0.941 |
表1 消融实验
Table 1 Ablation experiment
| 预测步数 | 模型 | 平均MSE | 平均R2 |
|---|---|---|---|
| 1 | Transformer | 1.148 | 0.919 |
| Transformer-MCRFB | 0.991 | 0.927 | |
| Transformer-MC-CF | 0.717 | 0.947 | |
| 2 | Transformer | 1.901 | 0.863 |
| Transformer- MCRFB | 0.450 | 0.968 | |
| Transformer-MC-CF | 0.163 | 0.989 | |
| 3 | Transformer | 2.143 | 0.853 |
| Transformer- MCRFB | 1.245 | 0.908 | |
| Transformer-MC-CF | 0.853 | 0.941 |
| 参数 | 出料含水率 | 出料温度 |
|---|---|---|
| 蒸汽自动阀门开度 | 0.808 8 | 0.729 8 |
| 工艺流量 | 0.742 9 | 0.808 2 |
| 气水混合阀门开度 | 0.745 7 | 0.690 3 |
| 加水比例 | 0.659 7 | 0.639 5 |
| 加水流量 | 0.582 9 | 0.553 1 |
| 工艺热风温度 | 0.514 3 | 0.497 5 |
| 物料累计量 | 0.498 8 | 0.484 7 |
| 加水累计量 | 0.486 2 | 0.460 9 |
表2 松散回潮输入参数和质量指标关联度
Table 2 Correlation degrees in loosening and conditioning
| 参数 | 出料含水率 | 出料温度 |
|---|---|---|
| 蒸汽自动阀门开度 | 0.808 8 | 0.729 8 |
| 工艺流量 | 0.742 9 | 0.808 2 |
| 气水混合阀门开度 | 0.745 7 | 0.690 3 |
| 加水比例 | 0.659 7 | 0.639 5 |
| 加水流量 | 0.582 9 | 0.553 1 |
| 工艺热风温度 | 0.514 3 | 0.497 5 |
| 物料累计量 | 0.498 8 | 0.484 7 |
| 加水累计量 | 0.486 2 | 0.460 9 |
| 参数 | 出料含水率 | 出料温度 |
|---|---|---|
| 瞬时加料比例 | 0.718 6 | 0.859 0 |
| 加料流量 | 0.693 6 | 0.822 3 |
| 工艺流量 | 0.674 7 | 0.799 8 |
| 蒸汽自动阀门开度 | 0.567 2 | 0.509 4 |
| 工艺热风温度 | 0.553 3 | 0.518 4 |
| 料液温度 | 0.393 5 | 0.368 1 |
| 瞬时加料精度 | 0.388 2 | 0.357 6 |
| 加水流量 | 0.309 1 | 0.285 8 |
| 气水混合阀门开度 | 0.275 0 | 0.256 7 |
表3 一级加料输入参数和质量指标关联度
Table 3 Correlation degrees in primary casing
| 参数 | 出料含水率 | 出料温度 |
|---|---|---|
| 瞬时加料比例 | 0.718 6 | 0.859 0 |
| 加料流量 | 0.693 6 | 0.822 3 |
| 工艺流量 | 0.674 7 | 0.799 8 |
| 蒸汽自动阀门开度 | 0.567 2 | 0.509 4 |
| 工艺热风温度 | 0.553 3 | 0.518 4 |
| 料液温度 | 0.393 5 | 0.368 1 |
| 瞬时加料精度 | 0.388 2 | 0.357 6 |
| 加水流量 | 0.309 1 | 0.285 8 |
| 气水混合阀门开度 | 0.275 0 | 0.256 7 |
| 组别 | 松散回潮 | 一级加料 | 平均 | ||
|---|---|---|---|---|---|
| 出料含水率 | 出料温度 | 出料含水率 | 出料温度 | ||
| 1 | 0.956 | 0.960 | 0.945 | 0.956 | 0.954 |
| 2 | 0.919 | 0.936 | 0.920 | 0.930 | 0.926 |
| 3 | 0.965 | 0.975 | 0.958 | 0.962 | 0.965 |
| 4 | 0.919 | 0.938 | 0.893 | 0.899 | 0.912 |
| 5 | 0.963 | 0.970 | 0.908 | 0.894 | 0.934 |
表4 剔除变量R2结果对比
Table 4 Comparison of R2 results for excluded variables
| 组别 | 松散回潮 | 一级加料 | 平均 | ||
|---|---|---|---|---|---|
| 出料含水率 | 出料温度 | 出料含水率 | 出料温度 | ||
| 1 | 0.956 | 0.960 | 0.945 | 0.956 | 0.954 |
| 2 | 0.919 | 0.936 | 0.920 | 0.930 | 0.926 |
| 3 | 0.965 | 0.975 | 0.958 | 0.962 | 0.965 |
| 4 | 0.919 | 0.938 | 0.893 | 0.899 | 0.912 |
| 5 | 0.963 | 0.970 | 0.908 | 0.894 | 0.934 |
| 对比模型 | 类别 | 时间窗 | 松散回潮 | 一级加料 | 平均 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 出料含水率 | 出料温度 | 出料含水率 | 出料温度 | ||||||||||||
| 1步 | 2步 | 3步 | 1步 | 2步 | 3步 | 1步 | 2步 | 3步 | 1步 | 2步 | 3步 | ||||
| LSTM | 单工序 | 8 | 0.940 | 0.879 | 0.813 | 0.993 | 0.948 | 0.853 | 0.889 | ||||||
| 单工序 | 16 | 0.940 | 0.901 | 0.847 | 0.973 | 0.984 | 0.891 | 0.911 | |||||||
| 单工序 | 24 | 0.941 | 0.879 | 0.814 | 0.975 | 0.984 | 0.864 | 0.894 | |||||||
| 单工序 | 8 | 0.941 | 0.884 | 0.824 | 0.948 | 0.896 | 0.844 | 0.889 | |||||||
| 单工序 | 16 | 0.942 | 0.885 | 0.826 | 0.948 | 0.896 | 0.844 | 0.890 | |||||||
| 单工序 | 24 | 0.942 | 0.884 | 0.826 | 0.947 | 0.895 | 0.842 | 0.889 | |||||||
| GRU | 单工序 | 8 | 0.922 | 0.858 | 0.789 | 0.934 | 0.887 | 0.839 | 0.793 | ||||||
| 单工序 | 16 | 0.934 | 0.869 | 0.803 | 0.945 | 0.898 | 0.851 | 0.846 | |||||||
| 单工序 | 24 | 0.920 | 0.851 | 0.780 | 0.939 | 0.891 | 0.842 | 0.781 | |||||||
| 单工序 | 8 | 0.842 | 0.781 | 0.699 | 0.859 | 0.813 | 0.842 | 0.872 | |||||||
| 单工序 | 16 | 0.910 | 0.847 | 0.786 | 0.895 | 0.847 | 0.910 | 0.883 | |||||||
| 单工序 | 24 | 0.852 | 0.777 | 0.698 | 0.834 | 0.789 | 0.852 | 0.870 | |||||||
| 本文方法 | 多工序 | 8 | 0.923 | 0.983 | 0.949 | 0.959 | 0.982 | 0.962 | 0.925 | 0.974 | 0.951 | 0.945 | 0.977 | 0.952 | 0.957 |
| 多工序 | 16 | 0.982 | 0.979 | 0.970 | 0.985 | 0.983 | 0.980 | 0.982 | 0.970 | 0.974 | 0.985 | 0.980 | 0.933 | 0.975 | |
| 多工序 | 24 | 0.981 | 0.973 | 0.947 | 0.984 | 0.981 | 0.961 | 0.918 | 0.974 | 0.953 | 0.949 | 0.980 | 0.955 | 0.963 | |
表5 对比实验R2结果
Table 5 Comparative experiments of R2
| 对比模型 | 类别 | 时间窗 | 松散回潮 | 一级加料 | 平均 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 出料含水率 | 出料温度 | 出料含水率 | 出料温度 | ||||||||||||
| 1步 | 2步 | 3步 | 1步 | 2步 | 3步 | 1步 | 2步 | 3步 | 1步 | 2步 | 3步 | ||||
| LSTM | 单工序 | 8 | 0.940 | 0.879 | 0.813 | 0.993 | 0.948 | 0.853 | 0.889 | ||||||
| 单工序 | 16 | 0.940 | 0.901 | 0.847 | 0.973 | 0.984 | 0.891 | 0.911 | |||||||
| 单工序 | 24 | 0.941 | 0.879 | 0.814 | 0.975 | 0.984 | 0.864 | 0.894 | |||||||
| 单工序 | 8 | 0.941 | 0.884 | 0.824 | 0.948 | 0.896 | 0.844 | 0.889 | |||||||
| 单工序 | 16 | 0.942 | 0.885 | 0.826 | 0.948 | 0.896 | 0.844 | 0.890 | |||||||
| 单工序 | 24 | 0.942 | 0.884 | 0.826 | 0.947 | 0.895 | 0.842 | 0.889 | |||||||
| GRU | 单工序 | 8 | 0.922 | 0.858 | 0.789 | 0.934 | 0.887 | 0.839 | 0.793 | ||||||
| 单工序 | 16 | 0.934 | 0.869 | 0.803 | 0.945 | 0.898 | 0.851 | 0.846 | |||||||
| 单工序 | 24 | 0.920 | 0.851 | 0.780 | 0.939 | 0.891 | 0.842 | 0.781 | |||||||
| 单工序 | 8 | 0.842 | 0.781 | 0.699 | 0.859 | 0.813 | 0.842 | 0.872 | |||||||
| 单工序 | 16 | 0.910 | 0.847 | 0.786 | 0.895 | 0.847 | 0.910 | 0.883 | |||||||
| 单工序 | 24 | 0.852 | 0.777 | 0.698 | 0.834 | 0.789 | 0.852 | 0.870 | |||||||
| 本文方法 | 多工序 | 8 | 0.923 | 0.983 | 0.949 | 0.959 | 0.982 | 0.962 | 0.925 | 0.974 | 0.951 | 0.945 | 0.977 | 0.952 | 0.957 |
| 多工序 | 16 | 0.982 | 0.979 | 0.970 | 0.985 | 0.983 | 0.980 | 0.982 | 0.970 | 0.974 | 0.985 | 0.980 | 0.933 | 0.975 | |
| 多工序 | 24 | 0.981 | 0.973 | 0.947 | 0.984 | 0.981 | 0.961 | 0.918 | 0.974 | 0.953 | 0.949 | 0.980 | 0.955 | 0.963 | |
图6 松散回潮多步预测结果((a) 松散回潮出料含水率1步预测;(b) 松散回潮出料含水率2步预测;(c) 松散回潮出料含水率3步预测;(d) 松散回潮出料温度1步预测;(e) 松散回潮出料温度2步预测;(f) 松散回潮出料温度3步预测)
Fig. 6 The multi-step prediction results of loosening and conditioning ((a) 1-step prediction for output material moisture content; (b) 2-step prediction for output material moisture content; (c) 3-step prediction for output material moisture content; (d) 1-step prediction for output material temperature; (e) 2-step prediction for output material temperature; (f) 3-step prediction for output material temperature)
图7 一级加料多步预测结果((a) 一级加料出料含水率1步预测;(b) 一级加料出料含水率2步预测;(c) 一级加料出料含水率3步预测;(d) 一级加料出料温度1步预测;(e) 一级加料出料温度2步预测;(f) 一级加料出料温度3步预测)
Fig. 7 The multi-step prediction results of primary casing ((a) 1-step prediction for output material moisture content; (b) 2-step prediction for output material moisture content; (c) 3-step prediction for output material moisture content; (d) 1-step prediction for output material temperature; (e) 2-step prediction for output material temperature; (f) 3-step prediction for output material temperature)
| [1] |
QIAN F. Smart process manufacturing toward carbon neutrality: digital transformation in process manufacturing for achieving the goals of carbon peak and carbon neutrality[J]. Engineering, 2023, 27(8): 1-2.
DOI URL |
| [2] | 刘孝保, 严清秀, 易斌, 等. 基于集成学习和改进粒子群优化算法的流程制造工艺参数优化[J]. 中国机械工程, 2023, 34(23): 2842-2853. |
|
LIU X B, YAN Q X, YI B, et al. Optimization of process parameters in process manufacturing based on ensemble learning and improved particle swarm optimization algorithm[J]. China Mechanical Engineering, 2023, 34(23): 2842-2853 (in Chinese).
DOI |
|
| [3] | 刘春奎, 刘春玲, 刘会杰, 等. 烤烟型卷烟烟气主要化学成分与感官质量的关系[J]. 南方农业学报, 2021, 52(6): 1665-1673. |
| LIU C K, LIU C L, LIU H J, et al. Relationship between main chemical components and sensory quality of flue-cured cigarette[J]. Journal of Southern Agriculture, 2021, 52(6): 1665-1673 (in Chinese). | |
| [4] | 李晓, 张浩博, 郭朋玮, 等. 不同规格卷烟配方叶丝柔软性与物理质量的关联性研究[J]. 中国烟草学报, 2024, 30(4): 33-43. |
| LI X, ZHANG H B, GUO P W, et al. Study on the correlation between softness and physical quality of formula tobacco in cigarettes of different specifications[J]. Acta Tabacaria Sinica, 2024, 30(4): 33-43 (in Chinese). | |
| [5] |
CHEN L S, YU Z H, ZHANG B, et al. Prediction method of cigarette draw resistance based on correlation analysis[J]. Computers and Electronics in Agriculture, 2023, 208: 107808.
DOI URL |
| [6] | 阴艳超, 洪志敏, 顾文娟, 等. 融合多通道CNN-BiGRU与时间模式注意力机制的多工序工艺质量预测方法[J]. 计算机集成制造系统, 2025, 31(8): 2905-2919. |
| YIN Y C, HONG Z M, GU W J, et al. Multi-process quality prediction method incorporating multi-channel CNN-BiGRU and temporal pattern attention[J]. Computer Integrated Manufacturing Systems, 2025, 31(8): 2905-2919 (in Chinese). | |
| [7] | 张家刚, 阴艳超, 易斌, 等. 融合多尺度卷积网络与TransGRU的流程生产过程质量多步预测方法[EB/OL]. (2025-02-10) [2025-03-10]. https://doi.org/10.13196/j.cims.2024.0479. |
| ZHANG J G, YIN Y C, YI B, et al. Multi-step prediction method for process production quality by integrating multi-scale convolutional network and TransGRU[EB/OL]. (2025-02-10) [2025-03-10]. https://doi.org/10.13196/j.cims.2024.0479. (in Chinese). | |
| [8] | 孙天宇, 黄魁东, 杨富强, 等. 多工序制造中的误差流模型及其应用研究进展[J]. 计算机集成制造系统, 2024, 30(7): 2251-2269. |
| SUN T Y, HUANG K D, YANG F Q, et al. Regulation and application of stream of variation modeling for multistage manufacturing[J]. Computer Integrated Manufacturing Systems, 2024, 30(7): 2251-2269 (in Chinese). | |
| [9] |
HADY H N, HADI R H, HASSOON O H, et al. Predicting process quality in multi-stage manufacturing using AE-BilA: an autoencoder-BiLSTM with attention mechanism[J]. Engineering Research Express, 2025, 7(1): 015424.
DOI |
| [10] |
SUN X, BEGHI A, SUSTO G A, et al. Deep learning-based quality prediction for multi-stage sequential hot rolling processes in heavy rail manufacturing[J]. Computers & Industrial Engineering, 2024, 196: 110466.
DOI URL |
| [11] | 彭开香, 秦昕, 王佳浩, 等. 一种面向多工序复杂制造过程的质量软测量方法[J]. 工程科学与技术, 2024, 56(6): 3-14. |
| PENG K X, QIN X, WANG J H, et al. A quality soft sensing method designed for complex multi-process manufacturing procedures[J]. Advanced Engineering Sciences, 2024, 56(6): 3-14 (in Chinese). | |
| [12] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
| [13] | HE K M, CHEN X L, XIE S N, et al. Masked autoencoders are scalable vision learners[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 15979-15988. |
| [14] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// The 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4278-4284. |
| [15] | 裴雪武, 董绍江, 方能炜, 等. 动态调整灰色关联分析方法在轴承早期退化在线识别中的应用[J]. 仪器仪表学报, 2023, 44(5): 61-70. |
| PEI X W, DONG S J, FANG N W, et al. A dynamically adjustment grey incidence analysis method and its application to online recognition of early degradation of bearing[J]. Chinese Journal of Scientific Instrument, 2023, 44(5): 61-70 (in Chinese). | |
| [16] | LI B, LIU N, WANG W. Coupling model based on grey relational analysis and stepwise discriminant analysis for subsidence discrimination of foundation in soft clay areas[J]. International Journal of Computational Science and Engineering, 2021, 24(1): 55-63. |
| [17] | 钱隼驰, 仇蕾. 灰色关联分析中分辨系数取值的定量研究[J]. 统计与决策, 2019, 35(10): 10-14. |
| QIAN S C, QIU L. Quantitative study on value of distinguishing coefficient in grey correlation analysis[J]. Statistics & Decision, 2019, 35(10): 10-14 (in Chinese). | |
| [18] |
XIE J Y, KONG W X, LU Y Y, et al. KSRFB-net: detecting and identifying butterflies in ecological images based on human visual mechanism[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(10): 3143-3158.
DOI |
| [19] | WANG C Y, LIAO H Y M, YEH I H. Designing network design strategies through gradient path analysis[J]. Journal of Information Science and Engineering, 2023, 39(4): 975-995. |
| [20] |
张立立, 杨康, 张珂, 等. 面向柴油车辆排放黑烟的改进型YOLOv8检测算法研究[J]. 图学学报, 2025, 46(2): 249-258.
DOI |
|
ZHANG L L, YANG K, ZHANG K, et al. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke[J]. Journal of Graphics, 2025, 46(2): 249-258 (in Chinese).
DOI |
|
| [21] | 郑淞之, 张兴, 张妍, 等. 基于轻量化卷积神经网络的蜂窝流量低复杂度预测方法[J]. 无线电通信技术, 2024, 50(5): 921-931. |
| ZHENG S Z, ZHANG X, ZHANG Y, et al. Low-complexity cellular traffic prediction algorithm based on lightweight convolutional neural network[J]. Radio Communications Technology, 2024, 50(5): 921-931 (in Chinese). | |
| [22] |
刘灿锋, 孙浩, 东辉. 结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究[J]. 图学学报, 2024, 45(6): 1256-1265.
DOI |
|
LIU C F, SUN H, DONG H. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network[J]. Journal of Graphics, 2024, 45(6): 1256-1265 (in Chinese).
DOI |
|
| [23] | 麦宇烽, 刘鸿, 刘竣文, 等. 松散回潮机热风循环系统自动清洗装置的研究[J]. 中国设备工程, 2025(17): 152-155. |
| MAI Y F, LIU H, LIU J W, et al. Research on the automatic cleaning device of the hot air circulation system of the loose moistening machine[J]. China Plant Engineering, 2025(17): 152-155 (in Chinese). | |
| [24] | 刘灼成, 程棉昌, 杨学良, 等. 基于机器视觉的烟丝加料机雾化效果监测系统[J]. 机电产品开发与创新, 2022, 35(2): 119-122. |
| LIU Z C, CHENG M C, YANG X L, et al. Atomization monitoring system of tobacco feeding machine based on machine vision[J]. Development & Innovation of Machinery & Electrical Products, 2022, 35(2): 119-122 (in Chinese). |
| [1] | 易斌, 张立斌, 刘丹楹, 唐军, 方俊俊, 李雯琦. 基于AMTA-Net的卷制过程激光打孔通风率预测模型[J]. 图学学报, 2025, 46(6): 1224-1232. |
| [2] | 左屿琪, 张云峰, 张秋悦, 徐英城. 基于超图表示学习和Transformer模型优化的知识感知推荐[J]. 图学学报, 2025, 46(5): 1050-1060. |
| [3] | 杨杰, 李琮, 胡庆浩, 陈显达, 王云鹏, 刘晓晶. 面向轻量卷积神经网络的训练后量化方法[J]. 图学学报, 2025, 46(4): 709-718. |
| [4] | 郭业才, 胡晓伟, 毛湘南. 多尺度密集交互注意力残差真实图像去噪网络[J]. 图学学报, 2025, 46(2): 279-287. |
| [5] | 刘灿锋, 孙浩, 东辉. 结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究[J]. 图学学报, 2024, 45(6): 1256-1265. |
| [6] | 路鹏, 吴凡, 唐建. 基于人工智能生成内容的产品造型设计与评价方法[J]. 图学学报, 2024, 45(6): 1277-1288. |
| [7] | 刘丽, 张起凡, 白宇昂, 黄凯烨. 结合Swin Transformer的多尺度遥感图像变化检测研究[J]. 图学学报, 2024, 45(5): 941-956. |
| [8] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
| [9] | 孙己龙, 刘勇, 周黎伟, 路鑫, 侯小龙, 王亚琼, 王志丰. 基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究[J]. 图学学报, 2024, 45(5): 1050-1061. |
| [10] | 罗智徽, 胡海涛, 马潇峰, 程文刚. 基于同质中间模态的跨模态行人再识别方法[J]. 图学学报, 2024, 45(4): 670-682. |
| [11] | 李滔, 胡婷, 武丹丹. 结合金字塔结构和注意力机制的单目深度估计[J]. 图学学报, 2024, 45(3): 454-463. |
| [12] | 黄友文, 林志钦, 章劲, 陈俊宽. 结合坐标Transformer的轻量级人体姿态估计算法[J]. 图学学报, 2024, 45(3): 516-527. |
| [13] | 石敏, 禚心如, 孙碧莲, 韩国庆, 朱登明. 适用于不同款式的无监督服装动画预测[J]. 图学学报, 2024, 45(3): 539-547. |
| [14] | 李佳琦, 王辉, 郭宇. 基于Transformer的三角形网格分类分割网络[J]. 图学学报, 2024, 45(1): 78-89. |
| [15] | 周磊晶, 张雨昕, 雷睿, 申奥怡. 铜凿剪纸风格化方法研究[J]. 图学学报, 2024, 45(1): 126-138. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||