图学学报 ›› 2024, Vol. 45 ›› Issue (5): 941-956.DOI: 10.11996/JG.j.2095-302X.2024050941
刘丽1,2(), 张起凡1,2,3, 白宇昂1,2, 黄凯烨1,2
收稿日期:
2024-05-28
修回日期:
2024-08-06
出版日期:
2024-10-31
发布日期:
2024-10-31
第一作者:
刘丽(1978-),女,副教授,博士。主要研究方向为人工智能和计算机视觉。E-mail:liuli@ncepu.edu.cn
基金资助:
LIU Li1,2(), ZHANG Qifan1,2,3, BAI Yuang1,2, HUANG Kaiye1,2
Received:
2024-05-28
Revised:
2024-08-06
Published:
2024-10-31
Online:
2024-10-31
First author:
LIU Li (1978-), associate professor, Ph.D. Her main research interests cover artificial intelligence and computer vision. E-mail:liuli@ncepu.edu.cn
Supported by:
摘要:
由于地物信息的复杂性及变化检测数据的多元性,遥感图像特征提取的充分性和有效性难以得到保证,导致变化检测方法获取的检测结果可靠性较低。虽然卷积神经网络(CNN)凭借有效提取语义特征的优势,被广泛应用于遥感领域的变化检测之中,但卷积操作固有的局部性导致感受野受限,无法捕获时空上的全局信息以至于特征空间对中远距离依赖关系的建模受限。为捕获远距离的语义依赖,提取深层全局语义特征,设计了一种基于Swin Transformer的多尺度特征融合网络SwinChangeNet。首先,SwinChangeNet采用孪生的多级Swin Transformer特征编码器进行远距离上下文建模;其次,编码器中引入特征差异提取模块,计算不同尺度下变化前后的多级特征差异,再通过自适应融合层将多尺度特征图进行融合;最后,引入残差连接和通道注意力机制对融合后的特征信息进行解码,从而生成完整准确的变化图。在CDD和CD_Data_GZ 2个公开数据集上分别与7种经典和前沿变化检测方法进行比较,CDD数据集中本文模型的性能最优,相比于性能第二的模型,F1分数提高了1.11%,精确率提高了2.38%。CD_Data_GZ数据集中本文模型的性能最优,相比于性能第二的模型,F1分数、精确率和召回率分别提高了4.78%,4.32%,4.09%,提升幅度较大。对比实验结果证明了该模型具有更好的检测效果。在消融实验中也证实了模型中各个改进模块的稳定性和有效性。本文模型针对遥感图像变化检测任务,引入了Swin Transformer结构,使网络可以对遥感图像的局部特征和全局特征进行更有效地编码,让检测结果更加准确,同时保证网络在地物要素种类繁多的数据集上容易收敛。
中图分类号:
刘丽, 张起凡, 白宇昂, 黄凯烨. 结合Swin Transformer的多尺度遥感图像变化检测研究[J]. 图学学报, 2024, 45(5): 941-956.
LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer[J]. Journal of Graphics, 2024, 45(5): 941-956.
评价指标 | 公式 | 含义 |
---|---|---|
总体精度 (OA) | 正确分类的像素在 总像素中占比 | |
精确率 (P) | 正确分类的像素在 总正类中占比 | |
F1分数 (F1) | 评价模型综合性能 | |
召回率 (R) | 正确分类的像素在 正类中占比 |
表1 实验评估指标信息
Table 1 Experimental evaluation indicator information
评价指标 | 公式 | 含义 |
---|---|---|
总体精度 (OA) | 正确分类的像素在 总像素中占比 | |
精确率 (P) | 正确分类的像素在 总正类中占比 | |
F1分数 (F1) | 评价模型综合性能 | |
召回率 (R) | 正确分类的像素在 正类中占比 |
Method | OA | P | F1 | R |
---|---|---|---|---|
FC-EF | 93.67 | 79.52 | 69.89 | 62.35 |
FC-Siam-conc | 95.64 | 89.26 | 79.48 | 71.64 |
FC-Siam-diff | 95.32 | 89.34 | 77.57 | 68.54 |
BIT | 98.70 | 95.34 | 94.44 | 93.56 |
USSFC-NET | 98.60 | 96.43 | 94.49 | 92.64 |
GCD-DDPM | 98.86 | 94.76 | 94.93 | 95.10 |
DASUNet | 98.71 | 94.93 | 94.32 | 93.71 |
SwinChangeNet | 98.97 | 97.14 | 96.04 | 94.97 |
表2 CDD数据集对比实验结果/%
Table 2 Comparative experimental results of CDD dataset/%
Method | OA | P | F1 | R |
---|---|---|---|---|
FC-EF | 93.67 | 79.52 | 69.89 | 62.35 |
FC-Siam-conc | 95.64 | 89.26 | 79.48 | 71.64 |
FC-Siam-diff | 95.32 | 89.34 | 77.57 | 68.54 |
BIT | 98.70 | 95.34 | 94.44 | 93.56 |
USSFC-NET | 98.60 | 96.43 | 94.49 | 92.64 |
GCD-DDPM | 98.86 | 94.76 | 94.93 | 95.10 |
DASUNet | 98.71 | 94.93 | 94.32 | 93.71 |
SwinChangeNet | 98.97 | 97.14 | 96.04 | 94.97 |
图18 CDD数据集的可视化分析结果((a) T1时刻图像;(b) T2时刻图像;(c)标签;(d) FC-EF;(e) FC-Siam-conv;(f) FC-Siam-diff;(g) BIT;(h) USSFC-NET;(i) GCD-DDPM;(j) DASUNet;(k) SwinChangeNet)
Fig. 18 Visualization analysis results of CDD dataset ((a) T1 moment image; (b) T2 moment image; (c) Label; (d) FC-EF; (e) FC-Siam-conv; (f) FC-Siam-diff; (g) BIT; (h) USSFC-NET; (i) GCD-DDPM; (j) DASUNet; (k) SwinChangeNet)
Method | OA | P | F1 | R |
---|---|---|---|---|
FC-EF | 97.90 | 85.60 | 76.98 | 69.94 |
FC-Siam-conc | 97.92 | 81.06 | 78.68 | 76.44 |
FC-Siam-diff | 97.77 | 80.82 | 76.63 | 72.85 |
BIT | 98.27 | 84.64 | 82.29 | 80.07 |
USSFC-NET | 98.17 | 82.97 | 81.44 | 79.96 |
GCD-DDPM | 97.09 | 87.92 | 85.26 | 83.86 |
DASUNet | 96.93 | 86.71 | 83.23 | 77.97 |
SwinChangeNet | 99.04 | 92.24 | 90.04 | 87.95 |
表3 CD_Data_GZ数据集对比实验结果/%
Table 3 Comparative experimental results of CD_Data_GZ dataset/%
Method | OA | P | F1 | R |
---|---|---|---|---|
FC-EF | 97.90 | 85.60 | 76.98 | 69.94 |
FC-Siam-conc | 97.92 | 81.06 | 78.68 | 76.44 |
FC-Siam-diff | 97.77 | 80.82 | 76.63 | 72.85 |
BIT | 98.27 | 84.64 | 82.29 | 80.07 |
USSFC-NET | 98.17 | 82.97 | 81.44 | 79.96 |
GCD-DDPM | 97.09 | 87.92 | 85.26 | 83.86 |
DASUNet | 96.93 | 86.71 | 83.23 | 77.97 |
SwinChangeNet | 99.04 | 92.24 | 90.04 | 87.95 |
图19 CD_Data_GZ数据集的可视化分析结果((a) T1时刻图像;(b) T2时刻图像;(c)标签;(d) FC-EF;(e) FC-Siam-conv;(f) FC-Siam-diff;(g) BIT;(h) USSFC-NET;(i) GCD-DDPM;(j) DASUNet;(k) SwinChangeNet)
Fig. 19 Visualization analysis results of CD_Data_GZ dataset ((a) T1 moment image; (b) T2 moment image; (c) Label; (d) FC-EF; (e) FC-Siam-conv; (f) FC-Siam-diff; (g) BIT; (h) USSFC-NET; (i) GCD-DDPM; (j) DASUNet; (k) SwinChangeNet)
模型结构 | ST编码器 | 特征差异提取 | CBAM | OA/% | P/% | F1-score/% | R/% |
---|---|---|---|---|---|---|---|
A | × | √ | √ | 98.48 | 96.19 | 94.01 | 91.93 |
B | √ | × | √ | 98.88 | 95.84 | 95.61 | 94.37 |
C | √ | √ | × | 98.99 | 95.89 | 95.72 | 95.56 |
SwinChangeNet | √ | √ | √ | 98.97 | 97.14 | 96.04 | 94.97 |
表4 CDD数据集消融实验结果
Table 4 Results of ablation experiments on the CDD dataset
模型结构 | ST编码器 | 特征差异提取 | CBAM | OA/% | P/% | F1-score/% | R/% |
---|---|---|---|---|---|---|---|
A | × | √ | √ | 98.48 | 96.19 | 94.01 | 91.93 |
B | √ | × | √ | 98.88 | 95.84 | 95.61 | 94.37 |
C | √ | √ | × | 98.99 | 95.89 | 95.72 | 95.56 |
SwinChangeNet | √ | √ | √ | 98.97 | 97.14 | 96.04 | 94.97 |
图20 CDD数据集消融实验可视化结果((a) T1时刻图像;(b) T2时刻图像;(c)标签;(d)模型A;(e)模型B;(f)模型C;(g) SwinChangeNet)
Fig. 20 Visualization results of CDD dataset ablation experiments ((a) T1 moment image; (b) T2 moment image; (c) Label; (d) Model A; (e) Model B; (f) Model C; (g) SwinChangeNet)
模型结构 | ST编码器 | 特征差异提取 | CBAM | OA/% | P/% | F1-score/% | R/% |
---|---|---|---|---|---|---|---|
A | × | √ | √ | 98.07 | 81.36 | 80.59 | 79.83 |
B | √ | × | √ | 98.83 | 92.91 | 87.52 | 82.72 |
C | √ | √ | × | 98.94 | 91.16 | 89.11 | 87.15 |
SwinChangeNet | √ | √ | √ | 99.04 | 92.24 | 90.04 | 87.95 |
表5 CD_Data_GZ数据集消融实验结果
Table 5 Results of ablation experiments on the CD_Data_GZ dataset
模型结构 | ST编码器 | 特征差异提取 | CBAM | OA/% | P/% | F1-score/% | R/% |
---|---|---|---|---|---|---|---|
A | × | √ | √ | 98.07 | 81.36 | 80.59 | 79.83 |
B | √ | × | √ | 98.83 | 92.91 | 87.52 | 82.72 |
C | √ | √ | × | 98.94 | 91.16 | 89.11 | 87.15 |
SwinChangeNet | √ | √ | √ | 99.04 | 92.24 | 90.04 | 87.95 |
图21 CD_Data_GZ数据集消融实验可视化结果((a) T1时刻图像;(b) T2时刻图像;(c)标签;(d)模型A;(e)模型B;(f)模型C;(g) SwinChangeNet)
Fig. 21 Visualization results of CD_Data_GZ dataset ablation experiments ((a) T1 moment image; (b) T2 moment image; (c) Label; (d) Model A; (e) Model B; (f) Model C; (g) SwinChangeNet)
图22 训练过程损失函数变化情况
Fig. 22 Changes in the loss function during the training process ((a) FC-Siam-diff; (b) BIT; (c) USSFC-NET; (d) GCD-DDPM; (e) DASUNet; (f) SwinChangeNet)
[1] | 张雷, 陈兆倩, 谢宝蓉, 等. 遥感图像的变化检测算法综述[J]. 电脑与信息技术, 2022, 30(5): 13-15. |
ZHANG L, CHEN Z Q, XIE B R, et al. A survey of change detection algorithms for remote sensing images[J]. Computer and Information Technology, 2022, 30(5): 13-15 (in Chinese). | |
[2] | SHAFIQUE A, CAO G, KHAN Z, et al. Deep learning-based change detection in remote sensing images: a review[J]. Remote Sensing, 2022, 14(4): 871. |
[3] | WEISMILLER R A, KRISTOF S J, SCHOLZ D K, et al. Change detection in coastal zone environments[J]. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1533-1539. |
[4] | 张钰屏, 刘籽琳, 陈天其. 遥感影像变化检测研究进展[J]. 电脑与信息技术, 2023, 31(2): 15-18. |
ZHANG Y P, LIU Z L, CHEN T Q. Research progress in remote sensing image change detection[J]. Computer and Information Technology, 2023, 31(2): 15-18 (in Chinese). | |
[5] | 杨彬, 毛银, 陈晋, 等. 深度学习的遥感变化检测综述: 文献计量与分析[J]. 遥感学报, 2023, 27(9): 1988-2005. |
YANG B, MAO Y, CHEN J, et al. Review of remote sensing change detection in deep learning: bibliometric and analysis[J]. National Remote Sensing Bulletin, 2023, 27(9): 1988-2005 (in Chinese). | |
[6] | LV Z Y, HUANG H T, LI X H, et al. Land cover change detection with heterogeneous remote sensing images: review, progress, and perspective[J]. Proceedings of the IEEE, 2022, 110(12): 1976-1991. |
[7] | 唐天俊, 王铜川. 基于半监督学习的遥感影像变化检测研究综述[J]. 现代计算机, 2024, 30(1): 61-65. |
TANG T J, WANG T C. A review of remote sensing image change detection research based on semi-supervised learning[J]. Modern Computer, 2024, 30(1): 61-65 (in Chinese). | |
[8] | JIANG H W, PENG M, ZHONG Y J, et al. A survey on deep learning-based change detection from high-resolution remote sensing images[J]. Remote Sensing, 2022, 14(7): 1552. |
[9] | ZHENG Z, ZHONG Y F, TIAN S Q, et al. ChangeMask: deep multi-task encoder-transformer-decoder architecture for semantic change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 228-239. |
[10] | WANG D C, ZHAO F, WANG C, et al. Y-Net: a multiclass change detection network for bi-temporal remote sensing images[J]. International Journal of Remote Sensing, 2022, 43(2): 565-592. |
[11] | 庄姊琪. 基于Siamese卷积神经网络的高分影像城市地物变化检测[D]. 武汉: 武汉大学, 2018. |
ZHUANG Z Q. Change detection in urban area based on Siamese convolutional neural network with high-spatial- resolution remote-sensing images[D]. Wuhan: Wuhan University, 2018 (in Chinese). | |
[12] | QUARMBY N A, CUSHNIE J L. Monitoring urban land cover changes at the urban fringe from SPOT HRV imagery in south-east England[J]. International Journal of Remote Sensing, 1989, 10(6): 953-963. |
[13] | HOWARTH P J, WICKWARE G M. Procedures for change detection using Landsat digital data[J]. International Journal of Remote Sensing, 1981, 2(3): 277-291. |
[14] | LUDEKE A K, MAGGIO R C, REID L M. An analysis of anthropogenic deforestation using logistic regression and GIS[J]. Journal of Environmental Management, 1990, 31(3): 247-259. |
[15] | HUANG C Q, SONG K, KIM S, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J]. Remote Sensing of Environment, 2008, 112(3): 970-985. |
[16] | IM J, JENSEN J R. A change detection model based on neighborhood correlation image analysis and decision tree classification[J]. Remote Sensing of Environment, 2005, 99(3): 326-340. |
[17] | MOLINIER M, ANTROPOV O, MUTANEN T. Clear-cut mapping in Landsat 8 images with a change detection method based on the random forest algorithm[EB/OL]. [2024-02-05]. https://www.researchgate.net/publication/285768595_Clear-cut_mapping_in_Landsat_8_images_with_a_change_detection_method_based_on_the_random_forest_algorithm. |
[18] |
王守峰, 杨学志, 董张玉, 等. 基于Relief-PCA特征选择的遥感图像变化检测[J]. 图学学报, 2019, 40(1): 117-123.
DOI |
WANG S F, YANG X Z, DONG Z Y, et al. Remote sensing image change detection based on Relief-PCA feature selection[J]. Journal of Graphics, 2019, 40(1): 117-123 (in Chinese). | |
[19] | LI Q Y, ZHONG R F, DU X, et al. TransUNetCD: a hybrid transformer network for change detection in optical remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622519. |
[20] | SHI W Z, ZHANG M, ZHANG R, et al. Change detection based on artificial intelligence: state-of-the-art and challenges[J]. Remote Sensing, 2020, 12(10): 1688. |
[21] | YU X, FAN J F, CHEN J H, et al. NestNet: a multiscale convolutional neural network for remote sensing image change detection[J]. International Journal of Remote Sensing, 2021, 42(13): 4898-4921. |
[22] | ZHANG X W, YUE Y Z, GAO W X, et al. DifUnet++: a satellite images change detection network based on Unet++ and differential pyramid[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8006605. |
[23] | QU J H, XU Y S, DONG W Q, et al. Dual-branch difference amplification graph convolutional network for hyperspectral image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5519912. |
[24] | CHENG G, WANG G X, HAN J W. ISNet: towards improving separability for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623811. |
[25] | WU C, DU B, ZHANG L P. Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9774-9788. |
[26] | FANG S, LI K Y, LI Z. Changer: feature interaction is what you need for change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5610111. |
[27] | HU M Q, WU C, DU B, et al. Binary change guided hyperspectral multiclass change detection[J]. IEEE Transactions on Image Processing, 2023, 32: 791-806. |
[28] | ZHANG H T, CHEN K Y, LIU C Y, et al. CDMamba: remote sensing image change detection with mamba[EB/OL]. [2024-06-04]. https://arxiv.org/abs/2406.04207. |
[29] | CODEGONI A, LOMBARDI G, FERRARI A. TINYCD: a (not so) deep learning model for change detection[J]. Neural Computing and Applications, 2023, 35(11): 8471-8486. |
[30] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. |
[31] | CHEN H, QI Z P, SHI Z W. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5607514. |
[32] | NOMAN M, FIAZ M, CHOLAKKAL H, et al. Remote sensing change detection with transformers trained from scratch[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4704214. |
[33] | BANDARA W G C, PATEL V M. A transformer-based Siamese network for change detection[C]// 2022 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE Press, 2022: 207-210. |
[34] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2024-02-05]. https://arxiv.org/ abs/2010.11929. |
[35] |
李佳琦, 王辉, 郭宇. 基于Transformer的三角形网格分类分割网络[J]. 图学学报, 2024, 45(1): 78-89.
DOI |
LI J Q, WANG H, GUO Y. Classification and segmentation network based on Transformer for triangular mesh[J]. Journal of Graphics, 2024, 45(1): 78-89 (in Chinese).
DOI |
|
[36] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 10012-10022. |
[37] | 官申珂, 林晓, 郑晓妹, 等. 结合超像素分割的多尺度特征融合图像语义分割算法[J]. 图学学报, 2021, 42(3): 406-413. |
GUAN S K, LIN X, ZHENG X M, et al. A semantic segmentation algorithm using multi-scale feature fusion with combination of superpixel segmentation[J]. Journal of Graphics, 2021, 42(3): 406-413 (in Chinese). | |
[38] | 史彩娟, 陈厚儒, 葛录录, 等. 注意力残差多尺度特征增强的显著性实例分割[J]. 图学学报, 2021, 42(6): 883-890. |
SHI C J, CHEN H R, GE L L, et al. Salient instance segmentation via attention residual multi-scale feature enhancement[J]. Journal of Graphics, 2021, 42(6): 883-890 (in Chinese). | |
[39] | LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[EB/OL]. [2024-02-03]. https://www.xueshufan.com/publication/2805152403. |
[40] | DAUDT R C, LE SAUX B, BOULCH A. Fully convolutional Siamese networks for change detection[C]// 2018 25th IEEE International Conference on Image Processing. New York: IEEE Press, 2018: 4063-4067. |
[41] | LEI T, GENG X Z, NING H L, et al. Ultralightweight spatial-spectral feature cooperation network for change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4402114. |
[42] | WEN Y H, MA X P, ZHANG X K, et al. GCD-DDPM: a generative change detection model based on difference- feature-guided DDPM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5404416. |
[43] |
MIAO R, MENG G, ZHOU K, et al. DASUNet: a deeply supervised change detection network integrating full-scale features[J]. Scientific Reports, 2024, 14(1): 12464.
DOI PMID |
[1] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[2] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[3] | 吴沛宸, 袁立宁, 胡皓, 刘钊, 郭放. 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[4] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[5] | 谢国波, 林松泽, 林志毅, 吴陈锋, 梁立辉. 基于改进YOLOv7-tiny的道路病害检测算法[J]. 图学学报, 2024, 45(5): 987-997. |
[6] | 熊超, 王云艳, 罗雨浩. 特征对齐与上下文引导的多视图三维重建[J]. 图学学报, 2024, 45(5): 1008-1016. |
[7] | 彭文, 林金炜. 基于空间信息关注和纹理增强的短小染色体分类方法[J]. 图学学报, 2024, 45(5): 1017-1029. |
[8] | 刘宗明, 洪唯, 龙睿, 祝越, 张小宇. 基于自注意机制的乳源瑶绣自动生成与应用研究[J]. 图学学报, 2024, 45(5): 1096-1105. |
[9] | 李大湘, 吉展, 刘颖, 唐垚. 改进YOLOv7遥感图像目标检测算法[J]. 图学学报, 2024, 45(4): 650-658. |
[10] | 魏敏, 姚鑫. 基于多尺度与注意力机制的两阶段风暴单体外推研究[J]. 图学学报, 2024, 45(4): 696-704. |
[11] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
[12] | 武兵, 田莹. 基于注意力机制的多尺度道路损伤检测算法研究[J]. 图学学报, 2024, 45(4): 770-778. |
[13] | 赵磊, 李栋, 房建东, 曹琪. 面向交通标志的改进YOLO目标检测算法[J]. 图学学报, 2024, 45(4): 779-790. |
[14] | 李跃华, 仲新, 姚章燕, 胡彬. 基于改进YOLOv5s的着装不规范检测算法研究[J]. 图学学报, 2024, 45(3): 433-445. |
[15] | 张相胜, 杨骁. 基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法[J]. 图学学报, 2024, 45(3): 446-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||