[1] |
WEINBERG S. Principles and applications of the general theory of relativity[J]. Gravitation and Cosmology, 1972, 25(2): 65-65.
|
[2] |
DANZMANN K, PRINCE T. LISA assessment studyreport (yellow book)[R]. Paris: European Space Agency, 2011.
|
[3] |
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2016, 33(3): 035010.
|
[4] |
HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686.
DOI
URL
|
[5] |
BENDER P L. Additional astrophysical objectives for LISA follow-on missions[J]. Classical and Quantum Gravity, 2004, 21(5): S1203-S1208.
|
[6] |
KAWAMURA S, ANDO M, SETO N, et al. The Japanese space gravitational wave antenna: DECIGO[J]. Classical & Quantum Gravity, 2011, 28(9): 094011.
|
[7] |
HISCOCK B, HELLINGS R W. OMEGA: a space gravitational wave MIDEX mission[C]// The 191st AAS Meeting. Washington: Astronomical Society, 1997, 29: 1312.
|
[8] |
罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415-447.
|
|
LUO Z R, BAI S, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447 (in Chinese).
|
[9] |
LARSON S L, HISCOCK W A, HELLINGS R W. Sensitivity curves for spaceborne gravitational wave interferometers[J]. Physical Review D, 2000, 62(6): 062001.
DOI
URL
|
[10] |
焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43(9): 2516-2525.
DOI
|
|
JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43(9): 2516-2525 (in Chinese).
DOI
|
[11] |
王国梁, 赵滟, 卢志昂, 等. 基于MBSE的导弹武器系统效能评估[J]. 火力与指挥控制, 2022, 47(8): 116-123, 131.
|
|
WANG G L, ZHAO Y, LU Z A, et al. Effectiveness evaluation of missile weapon system based on MBSE[J]. Fire Control & Command Control, 2022, 47(8): 116-123, 131 (in Chinese).
|
[12] |
WYMORE A W. Model-based systems engineering[M]. Boca Raton: CRC Press, 2013: 201-205.
|
[13] |
HIRSHORN S R. Expanded guidance for nasa systems engineering. volume 2: crosscutting topics, special topics, and appendices[R]. Washington: National Aeronautics and Space Administration, 2016.
|
[14] |
关锋, 葛平, 周国栋, 等. MBSE发展趋势与中国探月工程并行协同论证[J]. 空间科学学报, 2022, 42(2): 183-190.
|
|
GUAN F, GE P, ZHOU G D, et al. Development trend of MBSE and investigation of concurrent collaborative demonstration for Chinese lunar exploration program[J]. Chinese Journal of Space Science, 2022, 42(2): 183-190 (in Chinese).
DOI
URL
|
[15] |
徐德胜, 高倩, 胡士强, 等. 基于SysML与Simulink的飞机供电系统联合仿真研究[C]// 第五届中国航空科学技术大会. 北京: 北京航空航天大学出版社, 2021: 500-504.
|
|
XU D S, GAO Q, HU S Q, et al. Research on co-simulation of aircraft electrical power system based on SysML and Simulink[C]// The 5th Chinese Aeronautics Science and Technology Conference. Beijing: Beihang University Press, 2021: 500-504 (in Chinese).
|
[16] |
李新光, 刘继红. 基于SysML的系统设计-仿真模型可视化转换[J]. 计算机辅助设计与图形学学报, 2016, 28(11): 1973-1981.
|
|
LI X G, LIU J H. A method of sys ML-based visual transformation of system design-simulation models[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(11): 1973-1981 (in Chinese).
|
[17] |
王宗仁, 周苏闰, 王丕东, 等. 基于MBSE的卫星产品系统与可靠性集成设计技术研究[C]// 第三届体系工程学术会议——复杂系统与体系工程管理. 武汉: 中科蓬勃出版社有限公司武汉编辑部, 2021: 385-394.
|
|
WANG Z R, ZHOU S R, WANG P D, et al. Research on integration design technology of satellite system and reliability based on MBSE[C]// The 3th Academic Conference on System Engineering - Complex Systems and System Engineering Management. Wuhan: China Schience Boom Press Limiten, 2021: 385-394 (in Chinese).
|
[18] |
PAREDIS C J J, JOHNSON T. Using OMG’S SysML to support simulation[C]// 2008 Winter Simulation Conference. New York: IEEE Press, 2008: 2350-2352.
|
[19] |
CAO Y, LIU Y S, FAN H R, et al. SysML-based uniform behavior modeling and automated mapping of design and simulation model for complex mechatronics[J]. Computer- Aided Design, 2013, 45(3): 764-776.
DOI
URL
|
[20] |
JOHNSON T, KERZHNER A, PAREDIS C J J, et al. Integrating models and simulations of continuous dynamics into SysML[J]. Journal of Computing and Information Science in Engineering, 2012, 12(1): 1.
|
[21] |
FRIEDENTHAL S, MOORE A, STEINER R. A practical guide to SysML: the systems modeling language[M]. Third edition. Waltham, MA: Elsevier/Morgan Kaufmann, 2015: 107-110.
|
[22] |
张玉金, 黄博, 廖文和. 面向场景的航空发动机基于模型的系统工程设计[J]. 计算机集成制造系统, 2021, 27(11): 3093-3102.
DOI
|
|
ZHANG Y J, HUANG B, LIAO W H. MBSE unified modeling and design method of commercial aeroengine for operation scenario[J]. Computer Integrated Manufacturing Systems, 2021, 27(11): 3093-3102 (in Chinese).
|
[23] |
LU X Y, TAN Y J, SHAO C G. Sensitivity functions for space-borne gravitational wave detectors[J]. Physical Review D, 2019, 100(4): 044042.
DOI
URL
|
[24] |
LUO Z R, WANG Y, WU Y L, et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108.
DOI
URL
|
[25] |
BROWN W R, KILIC M, HERMES J J, et al. A 12 minute orbital period detached white dwarf eclipsing binary[J]. The Astrophysical Journal Letters, 2011, 737(1): L23.
DOI
URL
|
[26] |
KILI M, BROWN W R, GIANNINAS A, et al. A new gravitational wave verification source[J]. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 444(1): L1-L5.
DOI
URL
|
[27] |
ROBSON T, CORNISH N J, LIU C. The construction and use of LISA sensitivity curves[J]. Classical & Quantum Gravity, 2019, 36(10): 105011.
|
[28] |
AJITH P, BABAK S, CHEN Y, et al. A phenomenological template family for black-hole coalescence waveforms[J]. Classical & Quantum Gravity, 2007, 24(19): S689-S699.
|