[1] |
PENG G L, ZHANG Z J, LI W Q. Computer vision algorithm for measurement and inspection of O-rings[J]. Measurement, 2016, 94: 828-836.
|
[2] |
DIESING G. How AI and machine vision intersect[J]. Quality, 2022, 61(2): 14.
|
[3] |
YU Y W, YIN G F, DU L Q. Image classification for steel strip surface defects based on support vector machines[J]. Advanced Materials Research, 2011, 217-218: 336-340.
|
[4] |
黄连, 刘晓军, 雷自力, 等. 基于奇异值分解的橡胶密封圈表面缺陷检测方法[J]. 润滑与密封, 2021, 46(11): 84-88.
DOI
|
|
HUANG L, LIU X J, LEI Z L, et al. Surface defect detection method of rubber sealing ring based on singular value decomposition[J]. Lubrication Engineering, 2021, 46(11): 84-88 (in Chinese).
DOI
|
[5] |
陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.
|
|
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034 (in Chinese).
|
[6] |
陶晓天, 何博侠, 张鹏辉, 等. 基于深度学习的航天密封圈表面缺陷检测[J]. 仪器仪表学报, 2021, 42(1): 199-206.
|
|
TAO X T, HE B X, ZHANG P H, et al. Surface defect detection of aerospace sealing rings based on deep learning[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 199-206 (in Chinese).
|
[7] |
李洪安, 郑峭雪, 陶若霖, 等. 基于深度学习的图像超分辨率研究综述[J]. 图学学报, 2023, 44(1): 1-15.
DOI
|
|
LI H A, ZHENG Q X, TAO R L, et al. Review of image super-resolutionbased on deep learning[J]. Journal of Graphics, 2023, 44(1): 1-15 (in Chinese).
|
[8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788.
|
[9] |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2023-05-17]. http://arxivorg.abs.180402767.
|
[10] |
KUZNETSOVA A, MALEVA T, SOLOVIEV V. Detecting apples in orchards using YOLOv3 and YOLOv5 in general and close-up images[C]// International Symposium on Neural Networks. Cham: Springer, 2020: 233-243.
|
[11] |
朱文博, 夏林聪, 陈龙, 等. 基于改进YOLOv5的O型密封圈缺陷检测方法[J]. 上海理工大学学报, 2022, 44(5): 440-448.
|
|
ZHU W B, XIA L C, CHEN L, et al. Defect detection method of O-ring based on improved YOLOv5[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(5): 440-448 (in Chinese).
|
[12] |
胡欣, 周运强, 肖剑, 等. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437.
DOI
|
|
HU X, ZHOU Y Q, XIAO J, et al. Surface defect detection of threaded steel based on improved YOLOv5[J]. Journal of Graphics, 2023, 44(3): 427-437 (in Chinese).
DOI
|
[13] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475.
|
[14] |
CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 12021-12031.
|
[15] |
LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-05-07]. http://arxivorg.abs.211205561.
|
[16] |
TONG Z, CHEN Y U, XU Z. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2023-05-07]. http://arxivorg.abs.230110051.
|
[17] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
[18] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence. New York: IEEE Press, 2017: 1137-1149.
|
[19] |
戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程, 2023, 49(1): 41-48.
DOI
|
|
QI L L, GAO J L. Small object detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1): 41-48 (in Chinese).
DOI
|