欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1183-1190.DOI: 10.11996/JG.j.2095-302X.2025061183

• 制造产品核心工业软件 • 上一篇    下一篇

新型二段式高效粗加工刀具路径生成

刘畅1(), 马鸿宇1, 申立勇1(), 袁春明1,2, 张博文1,2, 李世初1   

  1. 1 中国科学院大学数学科学学院北京 100049
    2 中国科学院数学与系统科学研究院北京 100190
  • 收稿日期:2025-08-22 接受日期:2025-10-30 出版日期:2025-12-30 发布日期:2025-12-27
  • 通讯作者:申立勇(1977-),男,教授,博士。主要研究方向为计算机辅助设计、智能技术等。E-mail:lyshen@ucas.ac.cn
  • 第一作者:刘畅(2001-),男,硕士研究生。主要研究方向为碰撞检测与路径规划。E-mail:liuchang232@mails.ucas.ac.cn
  • 基金资助:
    中国科学院战略先导科技专项(XDB0640200);国家自然科学基金(12201606);国家自然科学基金(12371384);国家自然科学基金(12271516)

A novel approach of two-stage high-efficiency rough machining toolpath generation

LIU Chang1(), MA Hongyu1, SHEN Liyong1(), YUAN Chunming1,2, ZHANG Bowen1,2, LI Shichu1   

  1. 1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    2 Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2025-08-22 Accepted:2025-10-30 Published:2025-12-30 Online:2025-12-27
  • First author:LIU Chang (2001-), master student. His main research interests cover collision detection, toolpath planning. E-mail:liuchang232@mails.ucas.ac.cn
  • Supported by:
    Strategic Priority Research Program of Chinese Academy of Sciences(XDB0640200);National Natural Science Foundation of China(12201606);National Natural Science Foundation of China(12371384);National Natural Science Foundation of China(12271516)

摘要:

整体开粗是减材制造中的首阶段,通过高效切除毛坯上大部分余量(行业实践通常达70%~90%),使工件形状和尺寸初步接近成品。其核心在于快速材料去除,直接决定加工效率。此前粗加工中的刀路生成算法主要使用环切方式,虽能得到较好的加工质量,但无法保证加工效率。考虑到这个问题,以及目前数控机床配备自动换刀功能已成主流,提出了一种基于碰撞检测的新型二段式粗加工优化算法。首先利用GPU并行计算进行碰撞检测快速确定可行加工域,并采用大直径刀具实施首段行切(DP)路径实现大范围去料切除;继而通过精准更新残留域边界,切换小直径刀具生成二阶段环切(CP)刀路进行精密环切。实验与加工仿真表明:相较于传统CP模式,该策略在保证加工表面质量的同时显著提升加工效率(增幅>17%),提供了缓解粗加工阶段质量与效率难以兼顾的核心矛盾的新思路。

关键词: 3轴减材制造, GPU并行加速, 轮廓偏置, 碰撞检测, 路径规划

Abstract:

Rough machining, the initial stage of subtractive manufacturing, rapidly removes the majority of workpiece stock (typically 70%-90% in industry practice) to approximate the final part geometry. Its core objective is high-efficiency material removal, which directly determines overall machining productivity. Conventional roughing toolpath generation algorithms predominantly employ contour-parallel strategies, which ensure satisfactory surface quality but often sacrifice efficiency. To address this given and leveraging the widespread adoption of automatic tool-changing systems in modern CNC (computer numerical control) machines, a novel two-stage roughing optimization algorithm based on collision detection was proposed. The method first utilized GPU-accelerated parallel computing for rapid collision detection to identify feasible machining zones. A large-diameter tool was then deployed to generate direction-parallel (DP) toolpaths in the first stage, enabling aggressive stock removal. Subsequently, the residual stock boundary was precisely updated, and a smaller-diameter tool was engaged to generate contour-parallel (CP) toolpaths for localized precision machining in the second stage. Experimental and simulation results demonstrated that, compared to traditional CP methods, this strategy achieved a 17% improvement in machining efficiency while maintaining surface quality. This work provided new perspectives on resolving the fundamental trade-off between machining quality and processing efficiency during rough machining.

Key words: 3-axis subtractive manufacturing, GPU parallel acceleration, contour-offset, collision detection, toolpath planning

中图分类号: