欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1172-1182.DOI: 10.11996/JG.j.2095-302X.2025061172

• 制造产品核心工业软件 • 上一篇    下一篇

基于多通道融合GRA-Transformer的多工序工艺质量预测模型

唐军(), 朱世华, 易斌, 刘春波, 王明悦, 马宁()   

  1. 云南中烟工业有限责任公司技术中心云南 昆明 650231
  • 收稿日期:2025-07-31 接受日期:2025-11-05 出版日期:2025-12-30 发布日期:2025-12-27
  • 通讯作者:马宁(1979-),女,工程师,本科。主要研究方向为数据挖掘和先进制造。E-mail:41132413@qq.com
  • 第一作者:唐军(1984-),男,高级工程师,博士。主要研究方向为数据挖掘和先进制造。E-mail:juntang2013@163.com

Multi-channel fusion GRA-Transformer based multi-stage prediction model for multi-process quality indicators prediction

TANG Jun(), ZHU Shihua, YI Bin, LIU Chunbo, WANG Mingyue, MA Ning()   

  1. Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming Yunnan 650231, China
  • Received:2025-07-31 Accepted:2025-11-05 Published:2025-12-30 Online:2025-12-27
  • First author:TANG Jun (1984-), senior engineer, Ph.D. His main research interests cover data mining and advanced manufacturing. E-mail:juntang2013@163.com

摘要:

在流程制造这类连续化生产场景中,产品均质化直接决定了用户体验的稳定性与满意度,其核心价值不仅体现在产品性能一致性上,更对生产效率提升与成本控制具有重要意义。然而,流程制造过程中各类工艺参数相互耦合,关联关系复杂,导致现有模型预测延迟高、精度较低。基于上述问题,提出了基于灰色关联分析(GRA)和Transformer-MC-CF的流程制造工艺质量指标多阶段、多步预测模型:首先,针对流程制造的多变量参数冗余问题,使用灰色关联分析量化各工序输入参数与质量指标的关联强度,筛选关键影响参数,剔除低关联度冗余变量,既降低模型计算复杂度,又避免无关信息干扰特征学习。然后,构建基于Transformer的多阶段、多步预测模型,针对多因素相互耦合导致的局部特征融合不足问题,设计了多通道感受野模块(MC-RFB),通过多尺度卷积与膨胀卷积的组合,兼顾局部细节特征与长时序依赖关系的捕捉;面向流程制造的工序连贯性特点,提出了关联特征融合(CF)模块,采用自适应加权策略融合上下游工序的隐特征,有效挖掘跨工序间接影响关系。实验结果表明,采用GRA方法有效提升了模型的预测效果。与其他传统模型相比,提出的Transformer-MC-CF模型在流程制造质量预测场景中相比其他模型领先超过4.6%,多工序、多步预测的平均拟合度达到了97.5%,为有效提升流程制造质量指标预测和调控能力,实现均质化生产提供了技术支撑。

关键词: 流程制造, 质量预测, 灰色关联分析, 卷积神经网络, Transformer

Abstract:

In continuous production scenarios of process manufacturing, product homogenization directly determines the stability and satisfaction of user experience. Its core value is not only reflected in the consistency of product performance, but also of great significance for improving production efficiency and controlling costs. However, various process parameters in process manufacturing are mutually coupled with complex correlations, which leads to high prediction delay and low accuracy in existing models. To address the above problems, a multi-stage, multi-step prediction model for process-manufacturing quality indicators based on grey relational analysis (GRA) and a Transformer-MC-CF was proposed. Firstly, to mitigate multivariate parameter redundancy in process manufacturing, GRA was used to quantify correlation strengths between input parameters of each process and quality indicators, to identify key influencing parameters, and to eliminate redundant variables with low correlation. This approach reduced the model’s computational complexity and avoided interference from irrelevant information during feature learning. Secondly, a multi-stage, multi-step prediction model based on the Transformer was constructed. To address insufficient local feature fusion caused by mutual coupling of multiple factors, a multi-channel receptive field block (MC-RFB) was designed. By combining multi-scale convolution and dilated convolution, the block simultaneously captured local detailed features and long-term temporal dependencies. Considering the sequential coherence of process manufacturing, a correlation feature fusion (CF) module was proposed; it adopted an adaptive-weighting strategy to fuse latent features of upstream and downstream processes, thereby effectively exploring the indirect inter-process influence relationships. Experimental results showed that the application of GRA effectively improved the prediction performance of the model. Compared with traditional models, the proposed Transformer-MC-CF model outperformed others by more than 4.6% in process-manufacturing quality prediction scenarios, and the average fitting degree for multi-process, multi-step prediction reached 97.5%. This model provided technical support for improving prediction and regulation capabilities of process-manufacturing quality indicators and for achieving homogenized production.

Key words: process manufacturing, quality prediction, grey relational analysis, convolutional neural network, Transformer

中图分类号: