欢迎访问《图学学报》 分享到:

图学学报

• 数字化设计 • 上一篇    下一篇

一种改进的蚁群算法在工艺规划与车间调度集成优化中的应用

摘 要:改进标准蚁群算法的执行策略,可提高工艺规划和调度集成问题的求解#br# 质量和效率。通过节点集、有向弧/无向弧集、AND/OR 关系,建立了基于AND/OR 图的工#br# 艺规划和调度集成优化模型。提出一种求解工艺规划与车间调度集成问题的改进蚁群优化算#br# 法,采用了信息素动态更新策略避免收敛过慢和局部收敛,利用多目标优化策略提高求解质#br# 量。仿真结果证明了该算法的有效性。#br# 关 键 词:工艺规划;调度;集成;优化;蚁群算法   

  • 出版日期:2015-06-30 发布日期:2015-05-05

Applications of An Improved Ant Colony Optimization ACO Algorithm in Integrated Process Planning and Scheduling

Abstract: The improvement of standard ant colony optimization (ACO) strategy is important#br# to improve the quality and efficiency for integrated process planning and scheduling (IPPS). A#br# graph-based optimization model for IPPS is constructed by means of node set, directed arc#br# set/undirected arc set and relation of AND/OR. An improved ACO for IPPS is proposed, which#br# avoids the slow convergence and the local convergence by dynamic pheromone update strategy,#br# and improves the quality by multi-objective optimization strategy. The simulation result#br# demonstrates the validity of the proposed algorithm for IPPS.#br# Key words: process planning; scheduling; integration; optimization; ant colony optimization   

  • Online:2015-06-30 Published:2015-05-05

摘要: 改进标准蚁群算法的执行策略,可提高工艺规划和调度集成问题的求解
质量和效率。通过节点集、有向弧/无向弧集、AND/OR 关系,建立了基于AND/OR 图的工
艺规划和调度集成优化模型。提出一种求解工艺规划与车间调度集成问题的改进蚁群优化算
法,采用了信息素动态更新策略避免收敛过慢和局部收敛,利用多目标优化策略提高求解质
量。仿真结果证明了该算法的有效性。

关键词: 工艺规划, 调度, 集成, 优化, 蚁群算法

Abstract: The improvement of standard ant colony optimization (ACO) strategy is important
to improve the quality and efficiency for integrated process planning and scheduling (IPPS). A
graph-based optimization model for IPPS is constructed by means of node set, directed arc
set/undirected arc set and relation of AND/OR. An improved ACO for IPPS is proposed, which
avoids the slow convergence and the local convergence by dynamic pheromone update strategy,
and improves the quality by multi-objective optimization strategy. The simulation result
demonstrates the validity of the proposed algorithm for IPPS.

Key words: process planning, scheduling, integration, optimization, ant colony optimization