欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (4): 699-709.DOI: 10.11996/JG.j.2095-302X.2023040699

• 图像处理与计算机视觉 • 上一篇    下一篇

内容语义和风格特征匹配一致的艺术风格迁移

李鑫1(), 普园媛1,2(), 赵征鹏1, 徐丹1, 钱文华1   

  1. 1.云南大学信息学院,云南 昆明 650500
    2.云南省高校物联网技术及应用重点实验室,云南 昆明 650500
  • 收稿日期:2022-12-06 接受日期:2023-03-06 出版日期:2023-08-31 发布日期:2023-08-16
  • 通讯作者: 普园媛(1972-),女,教授,博士。主要研究方向为数字图像处理、非真实感绘制和视觉艺术科学理解等。E-mail:yuanyuanpu@ynu.edu.cn
  • 作者简介:

    李鑫(1997-),男,硕士研究生。主要研究方向为图像风格迁移。E-mail:3323163785@qq.com

  • 基金资助:
    国家自然科学基金项目(61163019);国家自然科学基金项目(61271361);国家自然科学基金项目(61761046);国家自然科学基金项目(U1802271);国家自然科学基金项目(61662087);国家自然科学基金项目(62061049);云南省科技厅项目(2014FA021);云南省科技厅项目(2018FB100);云南省科技厅应用基础研究计划重点项目(202001BB050043);云南省科技厅应用基础研究计划重点项目(2019FA044);云南省重大科技专项计划项目(202002AD080001);云南省中青年学术技术带头人后备人才项目(2019HB121)

Content semantics and style features match consistent artistic style transfer

LI Xin1(), PU Yuan-yuan1,2(), ZHAO Zheng-peng1, XU Dan1, QIAN Wen-hua1   

  1. 1. School of Information Science and Engineering, Yunnan University, Kunming Yunnan 650500, China
    2. University Key Laboratory of Internet of Things Technology and Application, Kunming Yunnan 650500, China
  • Received:2022-12-06 Accepted:2023-03-06 Online:2023-08-31 Published:2023-08-16
  • Contact: PU Yuan-yuan (1972-), professor, Ph.D. Her main research interests cover digital image processing, non-realistic drawing, and scientific understanding of visual arts, etc. E-mail:yuanyuanpu@ynu.edu.cn
  • About author:

    LI Xin (1997-), master student. His main research interest covers image style transfer. E-mail:3323163785@qq.com

  • Supported by:
    National Natural Science Foundation of China(61163019);National Natural Science Foundation of China(61271361);National Natural Science Foundation of China(61761046);National Natural Science Foundation of China(U1802271);National Natural Science Foundation of China(61662087);National Natural Science Foundation of China(62061049);Project of Department of Science and Technology of Yunnan Province(2014FA021);Project of Department of Science and Technology of Yunnan Province(2018FB100);Key Project of Applied Basic Research Program of Yunnan Provincial Science and Technology Department(202001BB050043);Key Project of Applied Basic Research Program of Yunnan Provincial Science and Technology Department(2019FA044);Major Science and Technology Special Program Projects in Yunnan Province(202002AD080001);Reserve Talents of Young and Middle-Aged Academic and Technical Leaders in Yunnan Province(2019HB121)

摘要:

随着计算机视觉领域的发展,图像风格迁移已经成为一个具有挑战性和研究价值的重要课题。针对现有方法无法有效保留内容图像物体轮廓和同种内容语义迁移多种不同风格特征的问题,提出了一个内容语义和风格特征匹配一致的艺术风格迁移网络。首先,利用双支路特征处理模块增强风格特征和内容特征,并保留内容图像的物体轮廓;然后,在注意力特征空间中实现特征分布对齐和融合;最后,采用具有空间感知能力的插值模块实现内容语义的风格一致化。使用82 783张真实照片和80 095张艺术画像进行风格迁移训练,另各使用1 000张真实照片和艺术画像进行测试。实验通过与最新的4种风格迁移方法进行比较,并进行消融实验分别验证该框架与所加损失函数的有效性。实验结果表明,本文网络在256像素图像生成中平均运行时间为9.42 ms,在512像素图像生成中平均运行时间为10.23 ms;同时避免了内容结构扭曲失真,并将内容语义和风格特征匹配一致,具有更好的艺术视觉效果。

关键词: 卷积神经网络, 图像风格迁移, 注意力机制, 风格一致化, 特征融合

Abstract:

The development of computer vision has rendered image style transfer a challenging and valuable subject of research. Nonetheless, existing methods are unable to effectively preserve object contours of content images while migrating many different style features with the same content semantics. In response, an artistic style transfer network, with consistent matching of content semantics and style features, was proposed. First, a two-branch feature processing module was employed to enhance the style and content features and retain the object contours of content images. Subsequently, feature distribution alignment and fusion were achieved within the attentional feature space. Finally, an interpolation module with spatial perception capability was utilized to achieve style consistency of content semantics. The network was trained with 82 783 actual photos and 80 095 artistic portraits for style transfer. Furthermore, 1 000 actual photos and 1 000 artistic portraits were used for testing. The effectiveness of the proposed framework and the added loss function was verified through experiments, which included comparing it with the latest four style transfer methods and conducting ablation experiments, respectively. The experimental results demonstrated that the proposed network could run at an average time of 9.42 ms in 256-pixel image generation and 10.23 ms in 512-pixel image generation, while avoiding distortion of content structure and matching content semantics and style features consistently, with better artistic visual effects.

Key words: convolutional neural network, image style transfer, attention mechanism, style consistency, feature fusion

中图分类号: