欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (3): 548-557.DOI: 10.11996/JG.j.2095-302X.2024030548

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于结构引导边界增长的大孔洞深度补全算法

赵盛1,2(), 吴晓群1,2(), 刘鑫1,2   

  1. 1.北京工商大学计算机与人工智能学院,北京 100048
    2.食品安全大数据技术北京市重点实验室,北京 100048
  • 收稿日期:2023-11-08 接受日期:2024-02-21 出版日期:2024-06-30 发布日期:2024-06-12
  • 通讯作者:吴晓群(1984-),女,教授,博士。主要研究方向为计算机图形学、数字几何处理和图像处理。E-mail:wuxiaoqun@btbu.edu.cn
  • 第一作者:赵盛(1996-),男,硕士研究生。主要研究方向为计算机图形学、数字几何处理和图像处理。E-mail:winner_zs@163.com
  • 基金资助:
    国家自然科学基金面上项目(62272014)

Depth completion with large holes based on structure-guided boundary propagation

ZHAO Sheng1,2(), WU Xiaoqun1,2(), LIU Xin1,2   

  1. 1. School of Computing and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
    2. Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing 100048, China
  • Received:2023-11-08 Accepted:2024-02-21 Published:2024-06-30 Online:2024-06-12
  • First author:ZHAO Sheng (1996-), master student. His main research interests cover computer graphics, digital geometry processing and image processing. E-mail:winner_zs@163.com
  • Supported by:
    National Natural Science Foundation of China General Program(62272014)

摘要:

使用消费级深度相机采集深度信息时,受到设备、环境和物体材质等因素的影响,采集的深度信息往往存在缺失和孔洞,使得深度图像在后续的视觉任务中应用受限。现有的深度补全算法在解决大面积深度缺失时存在补全效果不佳和物体边界保持较差的问题。针对这2个问题,提出了基于结构引导边界增长的大孔洞深度补全算法。首先,结合RGB图像提供的边界信息,利用结构引导的边界增长策略补全物体边界处的深度缺失;最后,利用大孔洞切分填充与均值滤波相结合的方法,补全物体内部的大孔洞。实验结果表明,该算法能够在具有大面积缺失以及跨越物体缺失情况下有效地保持物体边界,同时能够补全大面积缺失的深度信息,并在多个数据集上的定量以及定性结果证明了该方法的有效性。

关键词: 分割图像, 结构引导, Bézier曲线拟合, 大孔洞补全, 边界增长

Abstract:

When collecting depth information using consumer-depth cameras, the collected depth information is often influenced by factors such as equipment, environment, and object material, often leading to missing depth information and holes, limiting the application of depth images in subsequent vision tasks. Existing depth-completion algorithms often struggle to effectively address large-area depth missing, resulting in poor complementation effect and poor object boundary maintenance. To tackle these two problems, a depth-completion algorithm for large holes based on structure-guided boundary growth was proposed. First, combined with the boundary information provided by the RGB images, the structure-guided boundary growth strategy was employed to complement the depth loss at the object boundary. Finally, the large holes inside the object were complemented using a combination of large-hole cut-and-fill and mean filtering. The experimental results demonstrated that the algorithm was able to efficiently maintain object boundaries with large missing areas and across missing objects, while being able to complement the depth information of large missing areas. Quantitative and qualitative results on multiple datasets demonstrated the effectiveness of the method.

Key words: segmented image, structural guidance, Bézier curve fitting, large hole completion, boundary propagation

中图分类号: