[1] 张彬彬, 帕孜来·马合木提. 基于 YOLOv3 改进的火焰目标
检测算法[J]. 激光与光电子学进展, 2021, 58(24): 289-296.
ZHANG B B, PAZILAI M H M T. Improved flame target
detection algorithm based on YOLOv3[J]. Laser &
Optoelectronics Progress, 2021, 58(24): 289-296 (in Chinese).
[2] 缪伟志, 陆兆纳, 王俊龙, 等. 基于视觉的火灾检测研究[J].
森林工程, 2022, 38(1): 86-92, 100.
MIAO W Z, LU Z N, WANG J L, et al. Fire detection
research based on vision[J]. Forest Engineering, 2022, 38(1):
86-92, 100 (in Chinese).
[3] DONG X D, YAN S, DUAN C Q. A lightweight vehicles
detection network model based on YOLOv5[J]. Engineering
Applications of Artificial Intelligence, 2022, 113: 104914.
[4] CHEN Z C, YANG J, CHEN L F, et al. Garbage classification
system based on improved ShuffleNet v2[J]. Resources,
Conservation and Recycling, 2022, 178: 106090.
[5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet
classification with deep convolutional neural networks[J].
Communications of the ACM, 2017, 60(6): 84-90.
[6] 刘凯, 魏艳秀, 许京港, 等. 基于计算机视觉的森林火灾识
别算法设计[J]. 森林工程, 2018, 34(4): 89-95.
LIU K, WEI Y X, XU J G, et al. Design of forest fire
identification algorithm based on computer vision full text
replacement[J]. Forest Engineering, 2018, 34(4): 89-95 (in
Chinese).
[7] LOWE D G. Distinctive image features from scale-invariant
keypoints[J]. International Journal of Computer Vision, 2004,
60(2): 91-110.
[8] PERRONNIN F, SÁNCHEZ J, MENSINK T. Improving the
fisher kernel for large-scale image classification[M]//Computer
Vision - ECCV 2010. Cham: Springer International Publishin,
2010: 143-156.
[9] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with
convolutions[C]//2015 IEEE Conference on Computer Vision
and Pattern Recognition. New York: IEEE Press, 2015: 1-9.
[10] 仲亭玉, 刘文萍, 刘鹏举. 基于分数阶微分视频融合的森林
烟火检测算法[J]. 北京林业大学学报, 2017, 39(3): 24-31.
ZHONG T Y, LIU W P, LIU P J. A forest fire smoke detection
algorithm based on fractional-calculus video fusion[J]. Journal
of Beijing Forestry University, 2017, 39(3): 24-31 (in Chinese).
[11] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense
object detection[C]//2017 IEEE International Conference on
Computer Vision. New York: IEEE Press, 2017: 2999-3007.
[12] AVAZOV K, MUKHIDDINOV M, MAKHMUDOV F, et al.
Fire detection method in smart city environments using a
deep-learning-based approach[J]. Electronics, 2021, 11(1): 73.
[13] LIU S T, ZHANG N N, YU G. Lightweight security wear
detection method based on YOLOv5[EB/OL]. [2022-02-20].
https://dl.acm.org/doi/10.1155/2022/1319029.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet
classification with deep convolutional neural networks[J].
Communications of the ACM, 2017, 60(6): 84-90.
[15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet
classification with deep convolutional neural networks[J].
Communications of the ACM, 2017, 60(6): 84-90.
[16] 张苗, 李璞, 杨漪, 等. 基于目标检测卷积神经网络的图像
型火灾探测算法[J]. 消防科学与技术, 2022, 41(6): 807-811.
ZHANG M, LI P, YANG Y, et al. Image fire detection
algorithms based on object detection convolutional neural
networks[J]. Fire Science and Technology, 2022, 41(6):
807-811 (in Chinese).
[17] DALAL N, TRIGGS B. Histograms of oriented gradients for
human detection[J]. Proceedings of Computer Vision and
Pattern Recognition, 2005, 1: 886-893.
[18] PERRONNIN F, SÁNCHEZ J, MENSINK T. Improving the
fisher kernel for large-scale image classification[M]//Computer
Vision - ECCV 2010. Cham: Springer International Publishin,
2010: 143-156.
[19] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for
efficient mobile network design[EB/OL]. [2022-01-12].
https://arxiv.org/abs/2103.02907.
[20] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid
pooling in deep convolutional networks for visual recognition[J].
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2015, 37(9): 1904-1916.
|