Journal of Graphics ›› 2023, Vol. 44 ›› Issue (3): 465-472.DOI: 10.11996/JG.j.2095-302X.2023030465
Previous Articles Next Articles
Received:
2022-10-11
Accepted:
2022-12-27
Online:
2023-06-30
Published:
2023-06-30
About author:
LUO Wen-yu (1982-), associate professor, Ph.D. His main research interests cover reconfigurable intelligent surface and smart radio environment. E-mail:luowenyu@ncwu.edu.cn
CLC Number:
LUO Wen-yu, FU Ming-yue. On-site monitoring technology of illegal swimming and fishing based on YoloX-ECA[J]. Journal of Graphics, 2023, 44(3): 465-472.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023030465
硬件设备 | 配置 |
---|---|
GPU | RTX 2060 |
显存 | 6 GB |
软件 | 版本 |
Pytorch | 1.9 |
CUDA | 10.2 |
Python | 3.8 |
Table 1 Experimental environment
硬件设备 | 配置 |
---|---|
GPU | RTX 2060 |
显存 | 6 GB |
软件 | 版本 |
Pytorch | 1.9 |
CUDA | 10.2 |
Python | 3.8 |
检测对象 | 模型 | Precisio (%) | Recall (%) | AP (%) |
---|---|---|---|---|
Swimming | YoloX-ECA | 81.29 | 93.75 | 94.17 |
YoloX-CBAM | 77.21 | 90.29 | 91.75 | |
YoloX | 81.23 | 91.69 | 93.62 | |
YoloX-SE | 77.37 | 90.78 | 92.63 | |
Fishing | YoloX-ECA | 87.17 | 95.96 | 96.70 |
YoloX-CBAM | 83.92 | 93.92 | 93.19 | |
YoloX | 83.04 | 94.95 | 93.25 | |
YoloX-SE | 78.85 | 91.94 | 89.33 | |
Warning | YoloX-ECA | 77.75 | 79.09 | 82.80 |
YoloX-CBAM | 82.63 | 80.11 | 85.63 | |
YoloX | 81.82 | 74.55 | 83.18 | |
YoloX-SE | 79.11 | 78.18 | 83.98 |
Table 2 Precisio, Recall and AP of YoloX-ECA, YoloX-CBAM, YoloX-SE, YoloX
检测对象 | 模型 | Precisio (%) | Recall (%) | AP (%) |
---|---|---|---|---|
Swimming | YoloX-ECA | 81.29 | 93.75 | 94.17 |
YoloX-CBAM | 77.21 | 90.29 | 91.75 | |
YoloX | 81.23 | 91.69 | 93.62 | |
YoloX-SE | 77.37 | 90.78 | 92.63 | |
Fishing | YoloX-ECA | 87.17 | 95.96 | 96.70 |
YoloX-CBAM | 83.92 | 93.92 | 93.19 | |
YoloX | 83.04 | 94.95 | 93.25 | |
YoloX-SE | 78.85 | 91.94 | 89.33 | |
Warning | YoloX-ECA | 77.75 | 79.09 | 82.80 |
YoloX-CBAM | 82.63 | 80.11 | 85.63 | |
YoloX | 81.82 | 74.55 | 83.18 | |
YoloX-SE | 79.11 | 78.18 | 83.98 |
Fig. 10 Example of YoloX-ECA model detection (((a), (b) Swimming predictions; (c) Swimming and Warning predictions; (d), (e), (f) Warning predictions; (g), (h) Fishing predictions))
[1] | 赵宇飞, 刘彪, 王毅, 等. 基于数字图像处理的土石坝坝料合格性智能检测方法[J]. 水利学报, 2022, 53(10): 1194-1206. |
ZHAO Y F, LIU B, WANG Y, et al. Intelligent detection method for material qualification of earth-rock dam based on digital image processing[J]. Journal of Hydraulic Engineering, 2022, 53(10): 1194-1206. (in Chinese) | |
[2] | 吴海燕, 李效宁. 图像识别在甘肃智慧水利中的应用[J]. 中国新通信, 2022, 24(8): 70-74. |
WU H Y, LI X N. Application of image recognition in Gansu wisdom water conservancy[J]. China New Telecommunications, 2022, 24(8): 70-74. (in Chinese) | |
[3] | 赵薛强, 凌峻. 无人机自动巡检智慧监控系统研究与应用[J]. 人民长江, 2022, 53(6): 235-241. |
ZHAO X Q, LING J. Development and application of intelligent monitoring system with UAV automatic inspection[J]. Yangtze River, 2022, 53(6): 235-241. (in Chinese) | |
[4] |
LI J, WANG J Z, LIU W X. Moving target detection and tracking algorithm based on context information[J]. IEEE Access, 2019, 7: 70966-70974.
DOI URL |
[5] |
GU B, HU H, REN Y, et al. Moving target detection and tracking in complex background[J]. International Journal of Smart Home, 2015, 9(9): 95-102.
DOI URL |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[7] |
王银, 王飞翔, 孙前来. 多尺度特征融合车辆检测方法[J]. 系统仿真学报, 2022, 34(6): 1219-1229.
DOI |
WANG Y, WANG F X, SUN Q L. Vehicle detection method based on multi scale feature fusion[J]. Journal of System Simulation, 2022, 34(6): 1219-1229. (in Chinese)
DOI |
|
[8] | 张明臻. 基于Dense-YOLO网络的井下行人检测模型[J]. 工矿自动化, 2022, 48(3): 86-90. |
ZHANG M Z. Underground pedestrian detection model based on Dense-YOLO network[J]. Industry and Mine Automation, 2022, 48(3): 86-90. (in Chinese) | |
[9] | 刘力, 苟军年. 基于Yolov4的铁道侵限障碍物检测方法研究[J]. 铁道科学与工程学报, 2022, 19(2): 528-536. |
LIU L, GOU J N. Research on detection method of railway intrusion obstacles based on Yolov4[J]. Journal of Railway Science and Engineering, 2022, 19(2): 528-536. (in Chinese) | |
[10] | 李坤, 樊宇. 基于改进卷积神经网络的船舶图像识别研究[J]. 舰船科学技术, 2021, 43(12): 187-189. |
LI K, FAN Y. Research on ship image recognition based on improved convolution neural network[J]. Ship Science and Technology, 2021, 43(12): 187-189. (in Chinese) | |
[11] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2022-07-01]. https://arxiv.org/abs/2107.08430. |
[12] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-07-01]. https://arxiv.org/abs/1804.02767. |
[13] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-10-01]. https://arxiv.org/abs/2004.10934. |
[14] | CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[EB/OL]. (2021-05-17) [2022-07-01]. https://arxiv.org/abs/2103.09460. |
[15] | GAO W W, SHAN M T, SONG N, et al. Detection of microaneurysms in fundus images based on improved YOLOv4 with SENet embedded[J]. Journal of Biomedical Engineering, 2022, 39(4): 713-720. |
[16] | 赵杰, 李絮, 申通. 基于SENet注意力机制和深度残差网络的腹部动脉分割[J]. 科学技术与工程, 2022, 22(22): 9529-9536. |
ZHAO J, LI X, SHEN T. Abdominal artery segmentation based on SENet attention mechanism and deep residual network[J]. Science Technology and Engineering, 2022, 22(22): 9529-9536. (in Chinese) | |
[17] |
刘学平, 李玙乾, 刘励, 等. 嵌入SENet结构的改进YOLOV3目标识别算法[J]. 计算机工程, 2019, 45(11): 243-248.
DOI |
LIU X, LI Y, LIU L, et al. Improved YOLOV3 target recognition algorithm with embedded SENet structure[J]. Computer Engineering, 2019, 45(11): 243-248. (in Chinese)
DOI |
|
[18] | 李克文, 李新宇. 基于SENet改进的Faster R-CNN行人检测模型[J]. 计算机系统应用, 2020, 29(4): 266-271. |
LI K W, LI X Y. Pedestrian detection model based on improved faster R-CNN with SENet[J]. Computer Systems & Applications, 2020, 29(4): 266-271. (in Chinese) | |
[19] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. (2018-07-18) [2022-07-01]. https://arxiv.org/abs/1807.06521. |
[20] |
付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20): 150-156.
DOI |
FU G, HUANG J, YANG T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20): 150-156. (in Chinese)
DOI |
|
[21] | WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[EB/OL]. (2020-03-24) [2022-07-01]. https://arxiv.org/abs/1910.03151. |
[22] | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[EB/OL]. (2015-02-06) [2022-07-01]. https://arxiv.org/abs/1502.01852. |
[1] |
LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan.
Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
[J]. Journal of Graphics, 2023, 44(4): 658-666.
|
[2] |
CAO Yi-qin , ZHOU Yi-wei , XU Lu.
A real-time metallic surface defect detection algorithm based on E-YOLOX
[J]. Journal of Graphics, 2023, 44(4): 677-690.
|
[3] | DENG Wei-ming , YANG Tie-jun , LI Chun-chun , HUANG Lin. Object detection for nameplate based on neural architecture search [J]. Journal of Graphics, 2023, 44(4): 718-727. |
[4] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[5] |
CHEN Gang , ZHANG Pei-ji , GONG Dong-dong , YU Jun-qing.
Research on safety clothing detection method for
surveillance video of thermal power plant
[J]. Journal of Graphics, 2023, 44(2): 291-297.
|
[6] | PI Jun, LIU Yu-heng, LI Jiu-hao. Research on lightweight forest fire detection algorithm based on YOLOv5s [J]. Journal of Graphics, 2023, 44(1): 26-32. |
[7] | CUI Zhen-dong , LI Zong-min, YANG Shu-lin , LIU Yu-jie , LI Hua. 3D object detection based on semantic segmentation guidance [J]. Journal of Graphics, 2022, 43(6): 1134-1142. |
[8] | ZHAO Hui , ZHAO Yao , JIN Lin-lin , DONG Lan-fang , XIAO Xiao. Research and realization of small target smoke and fire detection technology based on YOLOX [J]. Journal of Graphics, 2022, 43(5): 783-790. |
[9] | WU Li-zhan, WANG Xia-li, ZHANG Qian, WANG Wei-hao, LI Chao . An object detection method of falling person based on optimized YOLOv5s [J]. Journal of Graphics, 2022, 43(5): 791-802. |
[10] | HU Hai-tao , DU Hao-chen , WANG Su-qin , SHI Min , ZHU Deng-ming, . Improved YOLOX method for detecting surface defects of drug blister aluminum foil [J]. Journal of Graphics, 2022, 43(5): 803-814. |
[11] | DONG Hui, CHEN Xin-kai, SUN Hao, YAO Li-gang. Weed detection in vegetable field based on improved YOLOv4 and image processing [J]. Journal of Graphics, 2022, 43(4): 559-569. |
[12] | FAN Xin-nan, HUANG Wei-sheng, SHI Peng-fei, XIN Yuan-xue, ZHU Feng-ting, ZHOU Run-kang. Embedded substation instrument detection algorithm based on improved YOLOv4 [J]. Journal of Graphics, 2022, 43(3): 396-403. |
[13] | LI Ni-ni, WANG Xia-li, FU Yang-yang, ZHENG Feng-xian, HE Dan-dan, YUAN Shao-xin. A traffic police object detection method based on optimized YOLO model [J]. Journal of Graphics, 2022, 43(2): 296-305. |
[14] | GAO Wen-ting , LIU Yue. Review of real-time deep learning-based object detection for mobile augmented reality [J]. Journal of Graphics, 2021, 42(4): 525-534. |
[15] | XU Chen, NI Rong-rong, ZHAO Yao, . 3D object detection algorithm combined with sparse point cloud completion [J]. Journal of Graphics, 2021, 42(1): 37-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||