Journal of Graphics ›› 2023, Vol. 44 ›› Issue (3): 492-501.DOI: 10.11996/JG.j.2095-302X.2023030492
Previous Articles Next Articles
WANG Jia-jing(), WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei(
)
Received:
2022-10-31
Accepted:
2022-12-19
Online:
2023-06-30
Published:
2023-06-30
Contact:
WANG Xiao-mei (1970-), associate professor, master. Her main research interests cover image processing and computer network, etc. E-mail:xiaomei@shnu.edu.cn
About author:
WANG Jia-jing (1998-), master student. Her main research interest covers computer vision. E-mail:13262267327@163.com
Supported by:
CLC Number:
WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes[J]. Journal of Graphics, 2023, 44(3): 492-501.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023030492
Fig. 6 Image pre-processing ((a) Unprocessed images of original banknotes; (b) Image after Gaussian filtering; (c) Results after histogram equalization; (d) Results after Hough transformation and tilt correction)
参数 | 数值 |
---|---|
输入数据批大小 | 64 |
输入原图尺寸 | 416×416×3 |
动量系数 | 0.949 |
权重衰减正则系数 | 0.000 5 |
学习率 | 0.001 |
最大迭代次数 | 8 000 |
学习率变动步长 | 6 400,7 200 |
学习率变动因子 | 0.1 |
类别数 | 5 |
滤波器数量 | 27 |
Table 1 Detection of network experimental parameter settings
参数 | 数值 |
---|---|
输入数据批大小 | 64 |
输入原图尺寸 | 416×416×3 |
动量系数 | 0.949 |
权重衰减正则系数 | 0.000 5 |
学习率 | 0.001 |
最大迭代次数 | 8 000 |
学习率变动步长 | 6 400,7 200 |
学习率变动因子 | 0.1 |
类别数 | 5 |
滤波器数量 | 27 |
检测模型 | AP (%) | mAP (%) | Time (s) | ||||
---|---|---|---|---|---|---|---|
角花 | 花符 | 印章 | 签名 | 主景图 | |||
YOLOv3 | 88.32 | 87.27 | 84.89 | 64.24 | 81.22 | 81.19 | 0.294 |
SSD | - | - | - | - | - | 70.71 | 1.369 |
Faster R-CNN | 83.34 | 80.76 | 89.74 | 62.68 | 80.31 | 79.35 | 3.626 |
YOLOv4 | 96.49 | 93.16 | 91.53 | 82.76 | 95.26 | 91.84 | 0.373 |
Table 2 Comparison of detection and recognition performances of each model
检测模型 | AP (%) | mAP (%) | Time (s) | ||||
---|---|---|---|---|---|---|---|
角花 | 花符 | 印章 | 签名 | 主景图 | |||
YOLOv3 | 88.32 | 87.27 | 84.89 | 64.24 | 81.22 | 81.19 | 0.294 |
SSD | - | - | - | - | - | 70.71 | 1.369 |
Faster R-CNN | 83.34 | 80.76 | 89.74 | 62.68 | 80.31 | 79.35 | 3.626 |
YOLOv4 | 96.49 | 93.16 | 91.53 | 82.76 | 95.26 | 91.84 | 0.373 |
参数 | 数值 |
---|---|
输入数据批大小 | 32 |
输入组合尺寸 | 224×224×3 |
动量系数 | 0.9 |
权重衰减正则系数 | 0.000 1 |
学习率 | 0.001 |
最大迭代次数 | 90 |
学习率变动因子 | 0.1 |
类别数 | 129 |
Table 3 Feature extraction network parameter settings
参数 | 数值 |
---|---|
输入数据批大小 | 32 |
输入组合尺寸 | 224×224×3 |
动量系数 | 0.9 |
权重衰减正则系数 | 0.000 1 |
学习率 | 0.001 |
最大迭代次数 | 90 |
学习率变动因子 | 0.1 |
类别数 | 129 |
模型名称 | Top-1 ACC | Top-5 ACC |
---|---|---|
AlexNet | 28.492 | 83.631 |
VGG-16 | 24.302 | 82.961 |
ResNet-50 | 40.447 | 86.648 |
EfficientNet-B0 | 81.229 | 97.039 |
MobileNet-V2 | 80.637 | 96.855 |
GoogLeNet | 78.665 | 93.748 |
改进后的EfficientNet-B0 | 86.793 | 98.198 |
Table 4 Comparison results of classification networks (%)
模型名称 | Top-1 ACC | Top-5 ACC |
---|---|---|
AlexNet | 28.492 | 83.631 |
VGG-16 | 24.302 | 82.961 |
ResNet-50 | 40.447 | 86.648 |
EfficientNet-B0 | 81.229 | 97.039 |
MobileNet-V2 | 80.637 | 96.855 |
GoogLeNet | 78.665 | 93.748 |
改进后的EfficientNet-B0 | 86.793 | 98.198 |
模型名称 | mAP (%) | 参数量(MB) |
---|---|---|
EfficientNet-B0 (原图) | 79.53 | 32.8 |
EfficientNet-B3 (原图) | 81.58 | 86.6 |
EfficientNet-B7 (原图) | 82.09 | 149.6 |
EfficientNet-B0 (主景图+匹配) | 89.60 | 32.8 |
EfficientNet-B3 (主景图+匹配) | 90.48 | 86.6 |
EfficientNet-B7 (主景图+匹配) | 91.89 | 149.6 |
Table 5 Comparative experimental results of different EfficientNet models
模型名称 | mAP (%) | 参数量(MB) |
---|---|---|
EfficientNet-B0 (原图) | 79.53 | 32.8 |
EfficientNet-B3 (原图) | 81.58 | 86.6 |
EfficientNet-B7 (原图) | 82.09 | 149.6 |
EfficientNet-B0 (主景图+匹配) | 89.60 | 32.8 |
EfficientNet-B3 (主景图+匹配) | 90.48 | 86.6 |
EfficientNet-B7 (主景图+匹配) | 91.89 | 149.6 |
Fig. 14 Comparison experiment results of image matching of banknotes in the Republic of China ((a) Feature extraction matching results of main view; (b) Feature extraction and matching results of original banknote image)
[1] |
PARASHIVAMURTHY R, NAVEENA C, SHARATH KUMAR Y H. SIFT and HOG features for the retrieval of ancient Kannada epigraphs[J]. IET Image Processing, 2020, 14(17): 4657-4662.
DOI URL |
[2] |
LIU H, ZHAO Q J, ZHANG C, et al. Boosting VLAD with weighted fusion of local descriptors for image retrieval[J]. Multimedia Tools and Applications, 2019, 78(9): 11835-11855.
DOI |
[3] |
KISHORE D, RAO C. A multi-class SVM based content based image retrieval system using hybrid optimization techniques[J]. Traitement Du Signal, 2020, 37(2): 217-226.
DOI URL |
[4] |
GHRABAT M J J, MA G Z, MAOLOOD I Y, et al. An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier[J]. Human-Centric Computing and Information Sciences, 2019, 9(1): 1-29.
DOI |
[5] |
GE Z X, CAO G, LI X S, et al. Hyperspectral image classification method based on 2D-3D CNN and multibranch feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5776-5788.
DOI URL |
[6] | 王志伟, 普园媛, 王鑫, 等. 基于多特征融合的多尺度服装图像精准化检索[J]. 计算机学报, 2020, 43(4): 740-754. |
WANG Z W, PU Y Y, WANG X, et al. Accurate retrieval of multi-scale clothing images based on multi-feature fusion[J]. Chinese Journal of Computers, 2020, 43(4): 740-754. (in Chinese) | |
[7] |
周书仁, 谢盈, 蔡碧野. 融合多尺度特征的深度哈希图像检索方法[J]. 计算机科学与探索, 2018, 12(12): 1974-1986.
DOI |
ZHOU S R, XIE Y, CAI B Y. Deep hashing method for image retrieval based on multi-scale features[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(12): 1974-1986. (in Chinese) | |
[8] |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
DOI PMID |
[9] | DUBEY A, GUPTA O, GUO P, et al. Pairwise confusion for fine-grained visual classification[EB/OL]. [2022-05-08]. https://arxiv.org/abs/1705.08016. |
[10] |
顾军华, 王锋, 戚永军, 等. 基于多尺度卷积特征融合的肺结节图像检索方法[J]. 计算机应用, 2020, 40(2): 561-565.
DOI |
GU J H, WANG F, QI Y J, et al. Retrieval method of pulmonary nodule images based on multi-scale convolution feature fusion[J]. Journal of Computer Applications, 2020, 40(2): 561-565. (in Chinese)
DOI |
|
[11] |
朱明, 汪桐生, 王年, 等. 基于多尺度自注意卷积的足迹压力图像检索算法[J]. 模式识别与人工智能, 2020, 33(12): 1097-1103.
DOI |
ZHU M, WANG T S, WANG N, et al. Footprint pressure image retrieval algorithm based on multi-scale self-attention convolution[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(12): 1097-1103. (in Chinese)
DOI |
|
[12] | ZHANG F, LI M, ZHAI G S, et al. Multi-branch and multi-scale attention learning for fine-grained visual categorization[M]//MultiMedia Modeling. Cham: Springer International Publishing, 2021: 136-147. |
[13] | LI A X, HUANG W R, LAN X, et al. Boosting few-shot learning with adaptive margin loss[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 12573-12581. |
[14] | LI M, ZHOU G, CAI W, et al. Multi-scale sparse network with cross-attention mechanism for image-based butterflies fine-grained classification[EB/OL]. (2022-03-01) [2022-05-14]. https://www.sciencedirect.com/science/article/pii/S1568494622000060?via%3Dihub. |
[15] |
LYU C Z, HU G Q, WANG D. Attention to fine-grained information: hierarchical multi-scale network for retinal vessel segmentation[J]. The Visual Computer, 2022, 38(1): 345-355.
DOI |
[16] |
SINHA A, DOLZ J. Multi-scale self-guided attention for medical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(1): 121-130.
DOI URL |
[17] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
DOI URL |
[18] |
WEI X S. Mask-CNN: localizing parts and selecting descriptors for fine-grained bird species categorization[J]. Pattern Recognition, 2018, 76: 704-714.
DOI URL |
[19] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13024-13033. |
[20] |
WU T T, GU X Y, SHAO J B, et al. Colour image segmentation based on a convex K-means approach[J]. IET Image Processing, 2021, 15(8): 1596-1606.
DOI URL |
[1] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[2] |
LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan.
Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
[J]. Journal of Graphics, 2023, 44(4): 658-666.
|
[3] |
CAO Yi-qin , ZHOU Yi-wei , XU Lu.
A real-time metallic surface defect detection algorithm based on E-YOLOX
[J]. Journal of Graphics, 2023, 44(4): 677-690.
|
[4] |
SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao .
Landscape image generation based on conditional residual
generative adversarial network
[J]. Journal of Graphics, 2023, 44(4): 710-717.
|
[5] | DENG Wei-ming , YANG Tie-jun , LI Chun-chun , HUANG Lin. Object detection for nameplate based on neural architecture search [J]. Journal of Graphics, 2023, 44(4): 718-727. |
[6] |
YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping.
Monocular depth estimation based on Laplacian
pyramid with attention fusion
[J]. Journal of Graphics, 2023, 44(4): 728-738.
|
[7] |
GUO Yin-hong, WANG Li-chun, LI Shuang.
Image feature matching based on repeatability and
specificity constraints
[J]. Journal of Graphics, 2023, 44(4): 739-746.
|
[8] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[9] | LUO Wen-yu, FU Ming-yue. On-site monitoring technology of illegal swimming and fishing based on YoloX-ECA [J]. Journal of Graphics, 2023, 44(3): 465-472. |
[10] | YANG Liu, WU Xiao-qun . 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[11] | ZENG Wu , ZHU Heng-liang , XING Shu-li , LIN Jiang-hong , MAO Guo-jun. Saliency detection-guided for image data augmentation [J]. Journal of Graphics, 2023, 44(2): 260-270. |
[12] |
CHEN Gang , ZHANG Pei-ji , GONG Dong-dong , YU Jun-qing.
Research on safety clothing detection method for
surveillance video of thermal power plant
[J]. Journal of Graphics, 2023, 44(2): 291-297.
|
[13] | LUO Qi-ming, WU Hao, XIA Xin, YUAN Guo-wu. Prediction of damaged areas in Yunnan murals using Dual Dense U-Net [J]. Journal of Graphics, 2023, 44(2): 304-312. |
[14] | LI Hong-an , ZHENG Qiao-xue , TAO Ruo-lin , ZHANG Min , LI Zhan-li , KANG Bao-sheng. Review of image super-resolutionbased on deep learning [J]. Journal of Graphics, 2023, 44(1): 1-15. |
[15] | PI Jun, LIU Yu-heng, LI Jiu-hao. Research on lightweight forest fire detection algorithm based on YOLOv5s [J]. Journal of Graphics, 2023, 44(1): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||