Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 184-193.DOI: 10.11996/JG.j.2095-302X.2023010184
• Industrial Design • Previous Articles Next Articles
PEI Hui-ning1(), SHAO Xing-chen1, TAN Zhao-yun1, HUANG Xue-qin1, BAI Zhong-hang1,2(
)
Received:
2022-04-15
Revised:
2022-07-04
Online:
2023-10-31
Published:
2023-02-16
Contact:
BAI Zhong-hang
About author:
PEI Hui-ning (1986-), lecturer, Ph.D. Her main research interests cover computer-aided design and human reliability. E-mail:peihuining@hebut.edu.cn
Supported by:
CLC Number:
PEI Hui-ning, SHAO Xing-chen, TAN Zhao-yun, HUANG Xue-qin, BAI Zhong-hang. Prediction model of cultural image based on DE-GWO and SVR[J]. Journal of Graphics, 2023, 44(1): 184-193.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010184
样本编号 | 刻板的- 生动的 | 敦厚的- 狡猾的 | 拘谨的- 豪迈的 | 粗糙的- 精巧的 |
---|---|---|---|---|
1 | 0.63 | -0.74 | -0.37 | 0.42 |
2 | 1.37 | 1.00 | 1.16 | 1.00 |
3 | 1.11 | -0.16 | 0 | 0.63 |
4 | 0.89 | 0.32 | 0.84 | 0.11 |
5 | 0.95 | 0.21 | 0.37 | 1.00 |
… | … | … | … | … |
61 | 0.84 | 0.26 | -0.42 | 0.47 |
62 | 0.37 | -0.21 | -0.26 | 0.89 |
63 | -0.16 | -0.37 | -0.37 | 0.83 |
Table 1 Mean values of four dimensional images in the sample
样本编号 | 刻板的- 生动的 | 敦厚的- 狡猾的 | 拘谨的- 豪迈的 | 粗糙的- 精巧的 |
---|---|---|---|---|
1 | 0.63 | -0.74 | -0.37 | 0.42 |
2 | 1.37 | 1.00 | 1.16 | 1.00 |
3 | 1.11 | -0.16 | 0 | 0.63 |
4 | 0.89 | 0.32 | 0.84 | 0.11 |
5 | 0.95 | 0.21 | 0.37 | 1.00 |
… | … | … | … | … |
61 | 0.84 | 0.26 | -0.42 | 0.47 |
62 | 0.37 | -0.21 | -0.26 | 0.89 |
63 | -0.16 | -0.37 | -0.37 | 0.83 |
眼动指标 | F | 显著性 |
---|---|---|
总访问持续时间(s) | 3.164 | 0.025 |
第二次注视时间(s) | 251.915 | 0.000 |
最大瞳孔直径(mm) | 47.462 | 0.000 |
平均水平距离(dx) | 20.312 | 0.000 |
眨眼次数(N) | 15.987 | 0.000 |
平均眨眼次数(N/s) | 497.853 | 0.000 |
Table 2 One-way Anova of eye movement data
眼动指标 | F | 显著性 |
---|---|---|
总访问持续时间(s) | 3.164 | 0.025 |
第二次注视时间(s) | 251.915 | 0.000 |
最大瞳孔直径(mm) | 47.462 | 0.000 |
平均水平距离(dx) | 20.312 | 0.000 |
眨眼次数(N) | 15.987 | 0.000 |
平均眨眼次数(N/s) | 497.853 | 0.000 |
组号 | 数据集 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | … | 24 | 25 | 26 | 27 | |
组1 | 0.00 | -1.00 | -1.00 | -0.82 | … | 0.04 | 0.05 | 0.16 | 0.17 |
组2 | -0.49 | 1.00 | 1.00 | -0.36 | … | 0.62 | -0.13 | 0.71 | 0.75 |
组3 | -0.47 | -1.00 | -1.00 | -0.39 | … | -0.28 | -0.49 | -0.10 | 0.17 |
组4 | -1.00 | -1.00 | -1.00 | 0.86 | … | -0.22 | -0.38 | -0.16 | 0.25 |
组5 | -0.82 | -1.00 | -1.00 | 0.82 | … | -0.86 | -0.34 | -0.85 | -0.75 |
组6 | 0.21 | -1.00 | -1.00 | -0.25 | … | -0.77 | -0.77 | -0.72 | -0.33 |
组7 | -1.00 | -1.00 | -1.00 | -0.36 | … | 0.97 | 0.61 | 0.87 | 0.00 |
组8 | -1.00 | -1.00 | -1.00 | -0.89 | … | 0.62 | 0.30 | 0.32 | 0.42 |
组9 | 0.37 | 0.05 | 0.14 | 0.10 | … | 0.24 | -0.40 | -0.47 | -0.58 |
组10 | -0.91 | -1.00 | -1.00 | -0.89 | … | -0.77 | -0.71 | -0.66 | -0.50 |
组11 | -0.76 | -1.00 | -1.00 | -0.50 | … | -0.48 | -0.40 | -0.46 | -0.50 |
… | … | … | … | … | … | … | … | … | … |
Table 3 Normalized Dataset of eye movement parameters
组号 | 数据集 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | … | 24 | 25 | 26 | 27 | |
组1 | 0.00 | -1.00 | -1.00 | -0.82 | … | 0.04 | 0.05 | 0.16 | 0.17 |
组2 | -0.49 | 1.00 | 1.00 | -0.36 | … | 0.62 | -0.13 | 0.71 | 0.75 |
组3 | -0.47 | -1.00 | -1.00 | -0.39 | … | -0.28 | -0.49 | -0.10 | 0.17 |
组4 | -1.00 | -1.00 | -1.00 | 0.86 | … | -0.22 | -0.38 | -0.16 | 0.25 |
组5 | -0.82 | -1.00 | -1.00 | 0.82 | … | -0.86 | -0.34 | -0.85 | -0.75 |
组6 | 0.21 | -1.00 | -1.00 | -0.25 | … | -0.77 | -0.77 | -0.72 | -0.33 |
组7 | -1.00 | -1.00 | -1.00 | -0.36 | … | 0.97 | 0.61 | 0.87 | 0.00 |
组8 | -1.00 | -1.00 | -1.00 | -0.89 | … | 0.62 | 0.30 | 0.32 | 0.42 |
组9 | 0.37 | 0.05 | 0.14 | 0.10 | … | 0.24 | -0.40 | -0.47 | -0.58 |
组10 | -0.91 | -1.00 | -1.00 | -0.89 | … | -0.77 | -0.71 | -0.66 | -0.50 |
组11 | -0.76 | -1.00 | -1.00 | -0.50 | … | -0.48 | -0.40 | -0.46 | -0.50 |
… | … | … | … | … | … | … | … | … | … |
序号 | 眼动指标 | 含义 |
---|---|---|
1 | 第二次注视时间(s) | 指注视点从第二次进入到离开某个区域之间所用的总时长,在对象判别任务中用来衡量被试对对象包含信息的认知与处理程度,并以此反映语义一致性对对象认知的影响 |
2 | 总访问持续时间(%) | 指某个区域内注视时间的总和所占比,反映被试的认知困难程度。其访问时间比越高则代表被试对相关区域具有更高的关注程度,另一方面也表示对于该区域的信息处理难度也越大 |
3 | 平均水平距离(px) | 指2个注视点之间间隔的水平距离,表示获取信息量的多少,反映对信息的认知效率和处理难度。间隔距离越大,表明该注视所获取的信息越多且认知效率越高 |
4 | 最大瞳孔直径(px) | 指样本刺激过程中被试的瞳孔直径最大值,其大小能够反映被试的兴趣程度与情绪的唤醒程度。瞳孔直径越大则代表被试的心理唤醒程度越高,其兴趣程度越高 |
5 | 眨眼次数(N) | 指实验过程中眨眼次数的总和,除与被试参与认知任务时产生的负荷有关,还与个体的注意力呈负相关。眨眼次数越多,代表被试注意力较为分散,反之则表示相对集中 |
6 | 平均眨眼次数(N/s) | 指实验过程中眨眼次数的总和与时间的比值,能够反映被试在实验过程中整体注意水平和认知负荷能力 |
Table 4 Eye movement indicators and their implications
序号 | 眼动指标 | 含义 |
---|---|---|
1 | 第二次注视时间(s) | 指注视点从第二次进入到离开某个区域之间所用的总时长,在对象判别任务中用来衡量被试对对象包含信息的认知与处理程度,并以此反映语义一致性对对象认知的影响 |
2 | 总访问持续时间(%) | 指某个区域内注视时间的总和所占比,反映被试的认知困难程度。其访问时间比越高则代表被试对相关区域具有更高的关注程度,另一方面也表示对于该区域的信息处理难度也越大 |
3 | 平均水平距离(px) | 指2个注视点之间间隔的水平距离,表示获取信息量的多少,反映对信息的认知效率和处理难度。间隔距离越大,表明该注视所获取的信息越多且认知效率越高 |
4 | 最大瞳孔直径(px) | 指样本刺激过程中被试的瞳孔直径最大值,其大小能够反映被试的兴趣程度与情绪的唤醒程度。瞳孔直径越大则代表被试的心理唤醒程度越高,其兴趣程度越高 |
5 | 眨眼次数(N) | 指实验过程中眨眼次数的总和,除与被试参与认知任务时产生的负荷有关,还与个体的注意力呈负相关。眨眼次数越多,代表被试注意力较为分散,反之则表示相对集中 |
6 | 平均眨眼次数(N/s) | 指实验过程中眨眼次数的总和与时间的比值,能够反映被试在实验过程中整体注意水平和认知负荷能力 |
模型 | 性能指标 | ||
---|---|---|---|
MSE | MAE | 训练时间(s) | |
GWO-SVR | 0.28 | 0.39 | 70.73 |
ABC-SVR | 0.38 | 1.98 | 269.86 |
PSO-SVR | 0.41 | 1.85 | 204.35 |
AdaBoost-BP | 0.69 | 0.73 | 30.15 |
DT | 0.53 | 0.63 | 21.02 |
DE-GWO-SVR | 0.21 | 0.35 | 75.38 |
Table 5 Comparison of comprehensive performance of different models
模型 | 性能指标 | ||
---|---|---|---|
MSE | MAE | 训练时间(s) | |
GWO-SVR | 0.28 | 0.39 | 70.73 |
ABC-SVR | 0.38 | 1.98 | 269.86 |
PSO-SVR | 0.41 | 1.85 | 204.35 |
AdaBoost-BP | 0.69 | 0.73 | 30.15 |
DT | 0.53 | 0.63 | 21.02 |
DE-GWO-SVR | 0.21 | 0.35 | 75.38 |
[1] |
CRILLY N, MOULTRIE J, CLARKSON P J. Seeing things: consumer response to the visual domain in product design[J]. Design Studies, 2004, 25(6): 547-577.
DOI URL |
[2] | SEARCH P. Exploring the dynamic aesthetics of interaction design[M]//Design, User Experience, and Usability. Design Philosophy and Theory. Cham: Springer International Publishing, 2019: 84-97. |
[3] |
HU Y K, YU S H, QIN S F, et al. How to extract traditional cultural design elements from a set of images of cultural relics based on F-AHP and entropy[J]. Multimedia Tools and Applications, 2021, 80(4): 5833-5856.
DOI |
[4] | 孙华锋, 郑林欣. 基于两轴分析法的标志设计中文化符号构建研究[J]. 包装工程, 2020, 41(22): 258-263, 277. |
SUN H F, ZHENG L X. Construction and research of cultural symbol in logo design based on two-axis analysis method[J]. Packaging Engineering, 2020, 41(22): 258-263, 277 (in Chinese). | |
[5] | 郑林欣, 孙华锋. 高校校徽的文化符号构成与认知研究[J]. 包装工程, 2020, 41(4): 244-251. |
ZHENG L X, SUN H F. Cultural symbol constitution and cognition of badge for universities[J]. Packaging Engineering, 2020, 41(4): 244-251 (in Chinese). | |
[6] | 卢兆麟, 李升波, 徐少兵, 等. 基于眼动跟踪特征的汽车造型评价方法[J]. 清华大学学报: 自然科学版, 2015, 55(7): 775-781. |
LU Z L, LI S B, XU S B, et al. Automobile style evaluation based on eye tracking[J]. Journal of Tsinghua University: Science and Technology, 2015, 55(7): 775-781 (in Chinese). | |
[7] |
汶晨光, 苟秉宸, 吴林健, 等. 基于眼动分析的文化设计基因提取与应用研究[J]. 计算机工程与应用, 2018, 54(11): 217-224, 235.
DOI |
WEN C G, GOU B C, WU L J, et al. Extraction and application research of culture design gene based on eye movement analysis[J]. Computer Engineering and Applications, 2018, 54(11): 217-224, 235 (in Chinese).
DOI |
|
[8] | 闫龙华, 林丽, 肖华亮, 等. 基于心理与生理测量的苗族服饰纹样美感研究[J]. 图学学报, 2017, 38(5): 683-688. |
YAN L H, LIN L, XIAO H L, et al. Research on the aesthetic feeling of Miao costume patterns based on psychological and physiological measurements[J]. Journal of Graphic Science, 2017, 38(5): 683-688 (in Chinese). | |
[9] | 朱月, 邓成连. 基于心理与生理测量的辽瓷文化意象基因研究[J]. 计算机辅助设计与图形学学报, 2020, 32(7): 1183-1191. |
ZHU Y, DENG C L. Study on culture image meme of Liao dynasty ceramics by psychological and physiological measurement[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(7): 1183-1191 (in Chinese). | |
[10] | SUN L, SHAO H, LI S, et al. Integrated application of eye movement analysis and beauty estimation in the visual landscape quality estimation of urban waterfront park[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(9): 1-19. |
[11] | 李运, 郭钢. 基于多项眼动数据的产品造型方案评选模型[J]. 计算机集成制造系统, 2016, 22(3): 658-665. |
LI Y, GUO G. Selection model of product shape schemes based on multiple eye movement data[J]. Computer Integrated Manufacturing Systems, 2016, 22(3): 658-665 (in Chinese). | |
[12] |
LIU Z, CHEN L, CHANG H, et al. Online algorithms for BP functions maximization[J]. Theoretical Computer Science, 2021, 858: 114-121.
DOI URL |
[13] | 张贇, 吉卫喜, 党英, 等. 基于可拓实例与GA-BP的制动臂成本估算方法[J]. 机械设计与研究, 2021, 37(1): 91-96. |
ZHANG Y, JI W X, DANG Y, et al. Research on product cost estimation method based on extension examples and GA-BP[J]. Machine Design & Research, 2021, 37(1): 91-96 (in Chinese). | |
[14] |
ZHANG H, LIU F, ZHOU Y, et al. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem[J]. Information Sciences, 2020, 539: 347-374.
DOI URL |
[15] | CURA T. A rapidly converging artificial bee colony algorithm for portfolio optimization[J]. Knowledge-Based Systems, 2021, 233: 1-16. |
[16] | TANG H, SUN W, LIN A, et al. A GWO-based multi-robot cooperation method for target searching in unknown environments[J/OL]// Expert Systems with Applications. (2021-08-21) [2022-03-30]. https://doi.org/10.1016/j.eswa.2021.115795. |
[17] | 王新亭, 邓玮丹. 基于眼部追踪技术的产品意象草图认知差异研究[J]. 计算机辅助设计与图形学学报, 2019, 31(2): 287-294. |
WANG X T, DENG W D. Cognitive differences of product image sketches based on sketch eye tracking[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(2): 287-294 (in Chinese). | |
[18] | 陈田, 樊明焱, 任福继, 等. 采用瞳孔位置实现情感识别的方案[J]. 计算机应用研究, 2021, 38(6): 1765-1769. |
CHEN T, FAN M Y, REN F J, et al. Emotion recognition using pupil position[J]. Application Research of Computers, 2021, 38(6): 1765-1769 (in Chinese). | |
[19] | 刘淼, 聂桂平, 马翀, 等. 感性量化评价技术在工业产品设计中的认知研究与应用: 以智能电源产品设计的眼动实验为例[J]. 东华大学学报: 自然科学版, 2015, 41(4): 536-541. |
LIU M, NIE G P, MA C, et al. Cognition research and application of kansei quantitative evaluation in industrial product design: case study from eye tracking test on design of intelligent power device[J]. Journal of Donghua University: Natural Science, 2015, 41(4): 536-541 (in Chinese). | |
[20] | ZENG Z, ZHANG M, CHEN T, et al. A new selection operator for differential evolution algorithm[J]. Knowledge-Based Systems, 2021, 226: 1-13. |
[21] |
SUN G J, XU G N, JIANG N. A simple differential evolution with time-varying strategy for continuous optimization[J]. Soft Computing, 2020, 24(4): 2727-2747.
DOI |
[22] | 唐仲明. 论“响堂样式”的特征及形成[J]. 敦煌研究, 2015(5): 58-63. |
TANG Z M. On the emergence of the style of the Xiangtangshan grottoes and the features of the caves[J]. Dunhuang Research, 2015(5): 58-63 (in Chinese). | |
[23] | 罗仕鉴, 潘云鹤. 产品设计中的感性意象理论、技术与应用研究进展[J]. 机械工程学报, 2007, 43(3): 8-13. |
LUO S J, PAN Y H. Review of theory, key technologies and its application of perceptual image in product design[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 8-13 (in Chinese). | |
[24] |
袁树植, 高虹霓, 王崴, 等. 基于感性工学的人机界面多意象评价[J]. 工程设计学报, 2017, 24(5): 523-529.
DOI |
YUAN S Z, GAO H N, WANG W, et al. Multi-image evaluation for human-machine interface based on Kansei engineering[J]. Chinese Journal of Engineering Design, 2017, 24(5): 523-529 (in Chinese). | |
[25] | 周爱民, 刘宏斌, 张书涛, 等. 面向汽车主客观审美评价的不确定性推理模型[J]. 浙江大学学报: 工学版, 2021, 55(3): 419-429, 440. |
ZHOU A M, LIU H B, ZHANG S T, et al. Uncertainty reasoning model of subjective and objective aesthetic evaluation of car[J]. Journal of Zhejiang University: Engineering Science, 2021, 55(3): 419-429, 440 (in Chinese). | |
[26] |
程永胜, 徐骁琪, 陈国强, 等. 基于神经网络的电动汽车造型意象预测模型[J]. 计算机集成制造系统, 2021, 27(4): 1135-1145.
DOI |
CHENG Y S, XU X Q, CHEN G Q, et al. Image prediction model of electric vehicle based on neural network[J]. Computer Integrated Manufacturing Systems, 2021, 27(4): 1135-1145 (in Chinese). | |
[27] | GRILLI E, DININNO D, MARSICANO L, et al. Supervised segmentation of 3D cultural heritage[C]//2018 3rd Digital Heritage International Congress Held Jointly with 2018 24th International Conference on Virtual Systems & Multimedia. New York: IEEE Press, 2018: 1-8. |
[1] | FAN Zhen, LIU Xiao-jing, LI Xiao-bo, CUI Ya-chao. A homography estimation method robust to illumination and occlusion [J]. Journal of Graphics, 2023, 44(1): 166-176. |
[2] | LI Xiao-bo, LI Yang-gui, GUO Ning, FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
[3] | LIU Zhen-ye, CHEN Ren-jie, LIU Li-gang. Edge length based 3D shape interpolation [J]. Journal of Graphics, 2023, 44(1): 158-165. |
[4] | WANG Jia-dong, CAO Juan, CHEN Zhong-gui. Feature-preserving skeleton extraction algorithm for point clouds [J]. Journal of Graphics, 2023, 44(1): 146-157. |
[5] | WANG Yu-ping, ZENG Yi, LI Sheng-hui, ZHANG Lei. A Transformer-based 3D human pose estimation method [J]. Journal of Graphics, 2023, 44(1): 139-145. |
[6] | CHEN Ya-chao, FAN Yan-guo, YU Ding-feng, FAN Bo-wen. Adaptive bilateral filtering point cloud smoothing and IMLS evaluation method considering normal outliers [J]. Journal of Graphics, 2023, 44(1): 131-138. |
[7] | PAN Dong-hui, JIN Ying-han, SUN Xu, LIU Yu-sheng, ZHANG Dong-liang. CTH-Net: CNN-Transformer hybrid network for garment image generation from sketches and color points [J]. Journal of Graphics, 2023, 44(1): 120-130. |
[8] | LIANG AO, LI Zhi-han, HUA Hai-yang. PointMLP-FD: a point cloud classification model based on multi-level adaptive downsampling [J]. Journal of Graphics, 2023, 44(1): 112-119. |
[9] | HUANG Zhi-yong, HAN Sha-sha, CHEN Zhi-jun, YAO Yu, XIONG Biao, MA Kai. An imitation U-shaped network for video object segmentation [J]. Journal of Graphics, 2023, 44(1): 104-111. |
[10] | LI Hong-an, ZHENG Qiao-xue, TAO Ruo-lin, ZHANG Min, LI Zhan-li, KANG Bao-sheng. Review of image super-resolutionbased on deep learning [J]. Journal of Graphics, 2023, 44(1): 1-15. |
[11] | YAN Shan-wu, XIAO Hong-bing, WANG Yu, SUN Mei. Video anomaly detection combining pedestrian spatiotemporal information [J]. Journal of Graphics, 2023, 44(1): 95-103. |
[12] | GU Yu, ZHAO Jun. Research on image detection algorithm of freight train brake shoe bolt and brake shoe fault [J]. Journal of Graphics, 2023, 44(1): 88-94. |
[13] | ZHANG Chen-yang, CAO Yan-hua, YANG Xiao-zhong. Multi-focus image fusion method based on fractional wavelet combined with guided filtering [J]. Journal of Graphics, 2023, 44(1): 77-87. |
[14] | SHAO Ying-jie, YIN Hui, XIE Ying, HUANG Hua. A sketch-guided facial image completion network via selective recurrent inference [J]. Journal of Graphics, 2023, 44(1): 67-76. |
[15] | PAN Sen-lei, QIAN Wen-hua, CAO Jin-de, XU Dan. Learning attention for Dongba paintings emotion classification [J]. Journal of Graphics, 2023, 44(1): 59-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||